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Abstract

This paper explores the equivalence between spherical wave and plane
propagators. Spherical wave propagators are intrinsically part of di�rac-
tion and boundary scattering theory. However, one can construct math-
ematically equivalent representations of propagating waves from plane-
wave superpositions. In e�ect, this leads to two distinctly di�erent
approaches to di�raction theory. As a practical matter, common com-
putational methods apply when wavelength does not drive sampling re-
quirements, which is largely con�ned to Fraunhofer di�raction. Fresnel
scattering can lead to wavelength driven sampling, which severly lim-
ites computational methods. Examples are presented to illustrate the
Fourier-domain methods.

1 Introduction

Radio frequency (RF) and optical remote sensing applications employ diverse
technologies, but they have common theoretical foundations. The essential
physics is captured by the time-harmonic form of the Helmholtz equation:

r2 (r) + k2 (r) (r) = 0: (1)

The spatially varying complex wave�eld,  (r), is the observable, and k (r) is
formally the magnitude of a local propagation vector. The diverse technologies
are driven by the substantial di�erence in operating wavelengths. Nonethe-
less, there is a broad class of propagation problems where wavelength does not
dictate sampling requirements. In this operating regime identical computa-
tional methods can be used. This observation is not novel, but it provides an
interesting framework for interpreting propagation theory.
Coincidentally, this commonality was captured in a recent development of

the theory of scintillation as an extension of propagation theory that accom-
modates weakly inhomogeneous media. [1] Strictly homogeneous structure
(constant k2) is replaced by structure with gradients constrained to be small
over wavelength scales. Backscatter can be neglected insofar as its e�ects on
the forward propagation from directed sources are concerned. The resulting
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forward-propagation phenomena are fully characterized by a single �rst-order
di�erential equation called the forward propagation equation (FPE). The more
familiar parabolic wave equation (PWE) can be derived from the FPE. Ray
optics, in turn, can be derived from the PWE.
PWE applications are well-established for applications involving optics and

RF as well as acoustics. As an example, consider the intensity of an optical �eld
measured with a focal-plane array of detectors. The intensity at each detector
can be characterized by the ray-path from a source point through the focal
distance from the center of the array to the focal plane location. Propagation
disturbances initiated by atmospheric refractive-index structure along the ray
path are readily accommodated by the PWE. An antenna tracking an RF
source senses ionospheric propagation disturbances along the ray path from the
source to the receiver in much the same way. Although the physical scales of
the applications and the physics that drive the constitutive relations di�er, the
propagation model and the sampling requirements are nearly identical.
The FPE uses a Fourier-domain (plane-wave) propagator, which solves (1)

exactly in the absence of structure. Optics-oriented treatments of the prop-
agation phenomena invariably start with the Huygens-Fresnel (spherical-wave)
construction, which also solves (1) exactly in the absence of structure. The
exact solution here referred to here is the free propagation of the source �eld.
Because both the plane-wave and spherical-wave total �eld representations sat-
isfy the Helmholz equation, there is an implied equivalence between the two
approaches. The theory of di�raction characterizes interference phenomena
that develop as EM waves propagate away from their source regions. The
aforementioned equivalence implies that the theory of di�raction itself can be
formulated with plane-wave or spherical-wave propagators.
An important distinction is made here between the theory of scattering,

which formally addresses the interaction of EM waves with material objects
bounded by surfaces, and the interference phenomena (di�raction) that results.
Unfortunately, solutions to the Helmholtz equation that accommodate embed-
ded surfaces and compact objects are not easily obtained. Indeed, the boundary-
integral formulation of EM scattering theory admits no analytic solutions what-
soever.1 Moreover, numerical solutions to the boundary-integral equations that
de�ne the source �elds require sub-wavelength sampling. Wavelength scale
sampling severely limits practical analytic exploration. Consequently, most
practical applications of scattering theory use approximate boundary condi-
tions.
To pursue the rami�cations, recall that Green's theorem facilitates the con-

struction of solutions to the Helmholtz equation as superpositions of the radi-
ation from induced sources on the boundary surfaces. Kong's development of
EM boundary scattering theory, for example, is presented as the mathematical
formulation of Huygen's principle. [2, Chapter 5.3] Physical optics is derived
from the scalar form of Green's theorem, which is a special case of that mathe-

1The known boundary-constrained analytic solutions to the Helmholz equation use spe-
cial coordinate systems that support complete sets of basis functions that match boundary
conditions intrinsically.
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matical formulation. The guiding construct is the generation of secondary EM
�elds initiated on boundaries and propagated as a superpositions of spherical
waves. That part of the problem is robust.
If, as is usually the case, the boundary surfaces can be isolated by parallel

planes, then, via the aforementioned equivalence, propagation away from the
isolating planes can be calculated exactly by using Fourier decompositions rather
than as extensions of the evolving spherical waves. Because the �elds near
singular sources are highly structured, it is often more e�cient to use plane-
wave decompositions. This is the e�ectively the formal basis for constructing
wave-wave scattering cross sections, Fourier optics, and the FPE and the PWE
methodology already introduced.
It is appropriate to note as well that the common manifestations of di�rac-

tion, such as the �nite width of the point-spread-function in the focal plane of
a lens system and the penetration of �elds into geometric shadow regions are
interference patterns that develop as waves propagate away from their sources.
The development of intensity scintillation is also a manifestation of di�raction.
Indeed, under some conditions strong-focusing produces dramatic �ne-grained
intensity patterns called di�ractals [3].2 To reiterate, although di�raction phe-
nomena are intimately related to starting �elds, the interference patterns evolve
through propagation.
This paper reviews the mathematical equivalence between plane-wave and

spherical propagation, with emphasis on well-known results usually presented
as part of di�raction theory, speci�cally Franhofer and Fresnel di�raction and
the well-known Fourier-transform relation between a focusing lens aperture stop
and the point-spread function in the focal plane. Examples show that math-
ematical equivalence does not imply equivalent computational demands. A
rigorous test of the formal plane-wave spherical-wave propagator equivalence is
the computation of the �eld from the aperture stop of a focusing system through
the focal point. As a practical matter, only the Huygens-Fresnel construction
supports this calculation at optical wavelengths precisely because it demands
near wavelength-scale sampling.

2 Background

The starting point for the theoretical development is the scalar Helmholtz equa-
tion. In a medium that admits refractive index variations, the Helmholtz equa-
tion is written in the following modi�ed form, which explicitly identi�es the
structure variation [1, Chapter 2]:

r2 + k2 = �k2(2�n+ �n2) : (2)

As noted in the introduction,  (r) is the observable time-harmonic complex
�eld. It is convenient to identify a constant mean reference background refrac-

2See also the cover of the July 1984 issue of Applied Optics.
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tive index n such that �n = �n=n. It follows that

n = n
�
1 + �n

�
: (3)

The background refractive index is absorbed in the wavenumber de�nition

k = 2�fn=c = 2�=�; (4)

where f is the temporal frequency. For most scintillation applications the per-
turbations are small enough that the quadratic term can be ignored; moreover,
the remaining occurrences of n can be replaced by unity. For example, the re-
fractive index of the atmosphere is usually reported in refractivity units de�ned
as (n� 1)106. However, optical glass may have a refractive index of 2 or more,
which emphasizes the extreme di�erences of the propagation phenomena.
Equation (2.2) in Rino [1] is the vector form of (2). Equation (3-8) in

Goodman[4] is the time-domain form of the parent equation that leads to (2).
The derivation of the underlying modi�ed form of the Helmholtz equation ne-
glects the term, r(E�r lnn). In Rino [1] weakly inhomogeneous media makes
this approximation explicit. As it is applied for analysis, Equation (3-13) in
Goodman [4] is equivalent to (2). The time variation of the complex �elds,
exp f�2�iftg, is implicit.

2.1 Boundary Integral Representations

As noted in the introduction, boundary integral representations are used to
characterize the interaction of EM waves with material objects and boundary
surfaces. The development in Goodman[4] follows Born and Wolf [5], which
starts with the scalar boundary-integral representation

 (r) =

ZZ
�

�
@ (rs)

@N
G (r; rs) +  (rs)

@G (r; rs)

@N

�
ds: (5)

In (5),  (r) represents the complex �eld in the unbounded region outside the
boundary �, and

G (r; rs) =
exp fik jr� rsjg

jr� rsj
; (6)

is the scalar Green function. One can show that  (r) is a formal solution to
Helmholtz equation by virtue of the singular behavior of the Green function as
r! rs. The Green function and its normal derivative propagate induced �elds
on the boundary surfaces throughout the exterior region. A radiation condition
eliminates contributions from the outer boundary that closes the Green theorem
surface.

A self-consistent determination of the induced boundary �elds requires
knowledge of the electric properties of the medium inside the boundary as well
as the boundary surface geometry. For impenetrable surfaces, the boundary
integral can be manipulated as written to determine the induced �elds. Equa-
tions that can be solved for the unknown source �elds can be obtained by taking
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the limit as r! rs, but in doing do so one must accommodate the singular be-
havior of the Green function and its normal derivative. However this is done,
stable results demand sub-wavelength sampling.
Most practical applications of boundary-integral representations approxi-

mate the induced �elds with scaled representations of the source �elds. By
comparison, in the derivation of the FPE the multiplicative interaction of the
total �eld with the material structure permits an exact evaluation of the in-
tegral representation. Converting the integral equation into a pair equivalent
di�erential equations isolates the propagation interaction and the media inter-
action terms. In a homogeneous medium it can be established directly that the
propagation operator satis�es the homogeneous Helmholtz equation exactly.
For reference, the essential elements of theory of di�raction as it is developed

for optical systems are captured by the Dirichlet integral representation

 (r) =

ZZ
�

U (rs)G (r; rs) ds; (7)

where U (rs) is a source function on a representative surface. If U (rs) rep-
resents an evolving spherical wavefront, (7) is a mathematical statement of the
Huygens-Fresnel construction. The equivalence that will be established later is
readily generalized to forms of the theory that incorporate the derivative (Neu-
mann) term and extensions vector �elds, but the additional algebraic complexity
can obscure the essential characteristics of the result.

2.2 The Forward Approximation

The theoretical development in [1, Chapter 2] avoids an explicit treatment of
scattering theory by exploiting the fact that propagating waves, however they
are initiated, are highly directed. This is made explicit by showing that (2)
admits an equivalent representation as a pair of coupled �rst-order di�erential
equations. The coupled equations individually characterize wave �elds that
propagate in opposite directions with respect to a prescribed reference axis.
In the absence of the weakly inhomogeneous structure that couples the equa-
tions, the solutions are uncoupled and exact. A unidirectional source excites
waves propagating in the opposite direction only through scattering interac-
tions within the medium. These scattering interactions are negligibly small
in a weakly inhomogeneous medium. The forward approximation neglects the
weak backscatter insofar as it a�ects the forward �eld are concerned.
The result is a single �rst-order di�erential equation, which is called the for-

ward propagation equation (FPE). The following scalar FPE fully characterizes
propagation in an unbounded weakly inhomogeneous medium:

@ (x; &)

@x
= � (x; &) + ikS (x; &;�) (x; &) : (8)

In (8)  (x; &) represents the complex wave �eld in a rectangular coordinate
system with x the propagation reference axis and & a position vector in the
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plane normal to the x direction, and k = 2�=� is the wave number. The source
function is derived from the departure of the refractive index from unity:�

n2 � 1
�
=2 = �n+ �n2=2; (9)

and

S (x; &;�) = �n (x; &;�) + �n (x; &;�)
2
=2

' �n (x; &;�) : (10)

The leading term in (8) represents the propagation of a coherent monochro-
matic wave �eld in a homogeneous medium. The exact form of the propagation
operator is

� (x; &) =

ZZ b (x0; �) exp f�ikg (�) (x� x0)g
� exp fi� � &g d�

(2�)
2 : (11)

The complex �eld, b (x0; �), is the two-dimensional Fourier transform of the
�eld in the plane at x = x0

b (x0; �) = ZZ  (x0; &) exp f�i� � &g d&; (12)

and

g(�) =

8<:
q
1� (�=k)2 for � � k

i

q
(�=k)

2 � 1 for � > k
: (13)

Irrespective of how the FPE was derived, one can readily verify by direct sub-
stitution that (11) satis�es (2) when �n = 0. Thus, solutions to the FPE in a
homogeneous medium are exact solutions to the homogeneous Helmholtz equa-
tion. The unnumbered equation in Section 3.10.4 of Goodman [4] is equivalent
to (11),3 but Goodman does not use it in subsequent developments.

2.2.1 Narrow-angle scatter

For numerical integration of the FPE, the narrow-angle approximation is neither
required nor advantageous. However, the narrow-angle scatter approximation
is essential for analytic computation. When the spectral content of the �eldb (x0; �) is well contained within the disk de�ned by � = k, one can use the
approximation

g(�) �= 1� (�=k)2 =2. (14)

3In Rino [1] the propagator is de�ned in terms of spatial frequencies represented by � =
[�y ; �z ] where �y = 2�=L rather than spatial frequencies.
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The Formal equivalence of multiplication in the Fourier domain by powers of �
and derivatives of the same order in the spatial domain leads to the following
formal de�nition of the di�raction-operator and the parabolic approximation:

ik� = ik
p
1 +r?=k2

�= ik + ir?= (2k) : (15)

The parabolic approximation (8), namely

@U(x; &)

@x
= ir?U(x; &)=2k + ik�n(x; &)U(x; &); (16)

is obtained by applying (15) and performing some straightforward manipula-
tions. The PWE solutions apply to the modi�ed �eld

U(x; &) =  (x; &) expf�ikxg; (17)

however; removal of expf�ikxg in the FPE does not inuence computational
requirements.

2.3 Ray Optics

The theory of ray optics is derived by approximating vector �elds by products of
the formA (x; &) exp fik� (x; &)g. The refractive index is treated as a continuous
variable. When the refractive index gradients are small, which is a necessary
condition for weakly inhomogeneous media, the evolving �eld structure can be
characterized by propagation along geometric ray paths. The ray trajectories
are de�ned by position-dependent vectors r (s), where s is the distance along the
ray. The vector r (s) is constrained locally by two orthogonal vectors, namely
the unit vector s tangent to the ray at r (s) and the curvature vector { = ds=ds,
which is normal to s. The ray trajectory in the medium must satisfy the ray
equation

n{ +
dn

ds
s = rn: (18)

This equation can be derived from (16) by assigning the phase variation exp fik� (x; &)g
to U(x; &)[6, Chapter 5.2]. This is the basis for the earlier claim that ray optics
in unbounded media is contained in the broader class solutions to the FPE.
Note that aside from the wavelength dependence of the refractive index, the ray
trajectories are wavelength independent.

2.4 Optical Lens Systems

Optical lens systems require special treatment for two reasons. First, a lens
is de�ned by discontinuous boundaries, which often have discontinuous normal
derivatives as well. Second, the di�raction e�ects that limit the resolution of
optical systems ultimately must be incorporated into the analyses. A highly
simpli�ed lens system is used here to illustrate the use of ray optics to approx-
imate a starting �eld for Fourier-domain computation.
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Consider a representative lens system constructed from a colinear arrange-
ment of homogeneous radially symmetric lens objects. For simplicity, lens
objects will be con�ned to closed volumes circumscribed by intersecting spher-
ical segments. As already noted, boundary scattering theory tells us that the
transmission and scattering (reecting) properties of lens objects are determined
by the shape of the de�ning boundary surfaces and the constitutive properties
of the lens material. The dielectric properties are de�ned by a frequency-
dependent refractive index. From ray theory it follows that ray paths within
homogeneous lens objects are straight lines.4

A planar boundary admits an exact solution that can be constructed by
applying Snell's law to determine the wavefront propagation directions on either
side of the boundary:

sin �1
sin �2

=
n2
n1
: (19)

If the boundary variations are smooth enough, the boundary conditions are
approximated by applying Snell's law with respect to the surface normal. The
implicit assumption here is that the lens system is su�ciently uniform that
rays can be approximated by straight lines inside lens objects. Thus, ray
segments can be de�ned by unit vectors, ui, where i corresponds to the side
of the boundary in which the ray is de�ned. Let un represent a unit vector
normal to the surface. At the boundary

ui � un = cos �1,

which de�nes sin �1. Snell's law de�nes sin �2, which is measured with respect to
�un. The following pair of equations de�ne the continuation of ray trajectories
within lens objects:

�un � u2 =
q
1� sin2 �2 (20)

�un � u2 = sin �2 (21)

Knowing u2, one can calculate the intersection of the ray with the opposite
lens cap. The process can then be repeated to determine the direction of
the rays exiting the lens object. There are many utilities available that will
perform completely general ray analyses of lens systems and report the results
graphically or in tabular form. However, the simpler formulation is useful for
illustrative purposes. Figure 1 shows the evolution of a bundle of paraxial rays
through a bispherical lens. The cap radii are 120 mm. The lens thickness is
10 mm. The refractive index at .46 � is 1.62. The red pentagram show the
nominal location of the focus calculated from the lens equation

1

f
= (n� 1)

�
1

r1
� 1

r2
+
(n� 1)
n

d

r1r2

�
; (22)

where �rn is the positive convex radius of curvature of the lens faces, and d is
the thickness of the lens along the central ray.

4For this development only monochromatic radiation will be considered.
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Figure 1: Vertical cross section of the ray-trace evolution of a parallel bundle of
rays interacting with a bispherical lens. The red pentagram shows the predicted
focal point.

2.4.1 Field Estimation

The ray-optics construction of the wave�eld propagating away from the lens
system can be used to estimate the �eld in the aperture plane. Consider the
normal plane at x = 10 mm. The optical path is de�ned as the ray-path integral
weighted by the refractive index:

s =

I
nds =

X
i

nisi: (23)

The summation is over the three straight-line paths that connect points in the
entrance plane to points in the exit plane. The complex �eld in the vertical
plane has the form

 (x; & 0) = A (x; & 0) exp fiks(& 0)g : (24)

The amplitude weighting accounts for the increased �eld intensity necessary to
conserve energy as the �eld intensity becomes more concentrated. Figure 2
shows the optical path computed at the exit plane of the lens object shown in
Figure 1.
An eighth-order polynomial �t was used to approximate the optical path for

subsequent analysis.
Figure (3) shows the di�erence between a purely quadratic phase variation

and the phase variation deduced from ray-optics for the bispherical lens. It can
be see that the departures become more pronounced as the edges of the lens
are approached. In e�ect the full resolving power of the lens as dictated by its
diameter cannot be realized.
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Figure 2: Optical path length (red dots) computed from ray-trace shown in
Figure 1. Cuyan curve is �t to 8th order polynomial.

Figure 3: Ideal phase correction to produce a focus at a distance f from the
aperture plane.
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2.5 Forward Propagation

This section derives the Fraunhofer and Fresnel approximations from the FPE
propagator and demonstrates the formal equivalence between the Huygens-
Fresnel integral representation and the FPE. The standard approximations
use the narrow-angle scatter approximation, but the Fourier-domain propaga-
tor can be applied in principle without constraint. The examples show that
wavefront curvature imposes severe computational requirements. Although
Huygens-Fresnel requires the same sample density, it allows localization of the
computation. For this reason Huygens-Fresnel is the only viable construct for
calculating di�raction e�ects at optical wavelengths for high-curvature wave-
�elds.
Because narrow-angle scatter is the norm for practical optical systems, the

Fourier transform relation between uniform aperture and the point-spread-
function in the focal plane can be used modest sampling requirements.

2.5.1 Full-Wave Di�raction

In an unobstructed homogeneous region, the solution to the scalar Helmholtz
equation is determined by the �eld in the aperture plane at x = x0. If the
aperture plane is tilted, a linear phase variation can be applied to launch the
wave�eld normal to the actual orientation of the plane[7]. Alternatively, the
propagator itself can be written for evaluation along the principal propagation
direction[1, Chapter 4]. However, for the purposes of the development here
these details are unimportant. Basically (11) is a general solution to (1) for
any �eld de�ned in an unobstructed plane.
If one is interested in the �eld only at a large distance from the plane, the

solution takes a particularly simple form. An application of the stationary
phase approximation to (11) will show that

lim
�x!1

� (�x; &) = �ig(�r)
h
k2 b (0;�r)i expfikrg

2�kr
; (25)

where r =
p
�x+ &2 and �r is the transverse wavenumber in the direction

of r = [�x; &]. It is fundamental to the design of remote sensing systems
because it de�nes the on-axis signal intensity at distance r from the source.
O� axis, the �eld variation is de�ned by the Fourier transform of the aperture
distribution. In optics literature, (25) is called Fraunhofer approximation [4,
Chapter 4]. Although the narrow-angle scatter approximation was not used in
derivation, narrow-angle scattering is implicit because the transverse dimensions
are necessarily small when �x!1.
The near-�eld is much more demanding. To explore the near �eld, it is
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convenient to rewrite (11) as an explicit linear operation on the starting �eld:

� (x; &) =

ZZ �ZZ
 (x0; =k) exp f�i� � g d

�
� exp

n
i
p
1� �2 (k�x)

o
exp fi��k&g d�

(2�)
2 : (26)

Changing the order of integration isolates a nominally singular inner integral:

� (x; &) �
ZZ

 (x0; =k)

�
"ZZ

exp
n
i
p
1� �2 (k�x)

o
exp fi�� ((k&)� )g d�

(2�)
2

#
d; (27)

However, the exchange is justi�ed when the spectral content of the starting
�eld is limited to a narrow range of propagation angles, say where

p
1� �2 '

1� �2=2. It then follows that

� (x; &) ' exp fik�xg
ZZ

 (x0; =k)

�
ZZ

exp
�
�i�2 (k�x=2)

	
exp fi�� ((k&)� )g d�

(2�)
2 d. (28)

The Fourier transform represented by the � integration can be evaluated ana-
lytically. Carrying out the integration leads to the following near-�eld form of
the equation, which is called the Fresnel approximation

� (�x; &) ' �ik exp fik�xg
2�x

�
ZZ

 (0; & 00) exp
n
i (& � &)2 k= (2�x)

o
d& 00 (29)

=
�ik exp fik�xg

2�x
exp

�
i&2k= (2�x)

	
�
ZZ �

 (0; & 00) exp
�
i& 002k= (2�x)

	�
exp f�i&:& 00 (k=�x)g d& 00;

(30)

The two forms of the result are identical to Goodman's Equations (4-14) and
(4-17). The fact that the �nal form of the Fresnel approximation is itself a
Fourier transformation should not be confused with the Fourier transformation
in the propagation integral (26), which involves no approximations.
The reason for deriving these well know results here is to show that they

are special cases of full wave propagation, which can be evaluated numerically
by using Fourier transformations. Moreover, there is no compelling reason to
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impose the narrow scatter approximation. For the Fraunhofer regime, this
is empty generality because there are few, if any, practical situations where
the narrow-angle scatter approximation is violated. This is manifestly not
the case in the Fresnel region. To explore this, consider the Huygens-Fresnel
construction, which is also exact insofar as the propagation of a known starting
�eld is concerned. The main di�erence is that the Huygens-Fresnel starting
�eld is de�ned on a surface that need not be planar.
Starting with Huygens-Fresnel, consider the �eld in a plane at x = x0 that

isolates the de�ning surface from an unobstructed propagation space. From
(7),

 HF (x0; &) =

ZZ
�

U (rs)
exp fik jx0 � xs; & � &sjg

jx0 � xs; & � &sj
ds: (31)

Substituting the Weil representation of the Green function,

exp fik j�x; & � & 0jg
j�x; & � & 0j =

ZZ
i expfikg(�)�xg

2kg(�)
expfi�� (& � & 0) g d�

(2�)2
; (32)

into (31) and reversing the order of integration as before shows that

 HF (x; &) =

ZZ
�

U (rs)

ZZ
i expfikg(�)�xg

2kg(�)
expfi�� (& � &s) g

d�

(2�)2
ds

=

ZZ 24 i

2kg(�)

ZZ
�

U (rs) expf�i� � &sgds

35 expfi� � &g
� expfikg(�)�xg d�

(2�)2
: (33)

Evaluating the two-dimensional Fourier transform of  HF (x0; &)
5 establishes

the equivalence

b HF (x0; �) = i

2kg(�)

ZZ
�

U (rs) expf�i� � &sgds: (34)

Rewriting (33) in terms of b HF (x0; �) reproduces the plane-wave propagator:
 HF (x; &) =

ZZ b HF (x0; �) expfikg(�)�xg d�

(2�)2
: (35)

Note that (34) de�nes the Fourier transformation as an integration over the
induced sources of the �eld. It shows as well the subsequent propagation of
that �eld can be calculated in principle without approximation using Fourier-
domain methods.
However, the factor 1=g(�) in (34) is singular at k = �. For k < � it has

little e�ect; moreover, to properly accommodate the singularity requires careful

5�x = 0 ( x = x0
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evaluation. The poles in the spatial Fourier domain are necessary for generating
the singular behavior of the Green function. With the singular points in the
source region well removed from the plane at x = x0, this term can be safely
ignored.
Reciprocity provides another example of the equivalence between Green-

function and plane-wave representations. The Green function is intrinsically
symmetric to an interchange of the source and �eld point variables, which leads
to the reciprocal interchange between a source point and a measurement point.
It is also true that a spectral domain representation that maps incident plane
waves to forward or scattered plane waves can be constructed for invariance to
an interchange of wave vectors. [8].

3 Numerical Examples

The background material introduced two integral representations of a propaga-
tor that can be used for computing the evolution of a starting �eld. To the
extent that the computation is to be done numerically, sampling requirements
dictate the complexity. Strictly speaking, the Fourier domain propagator is
not restricted by narrow-angle scattering constraints. However, most practi-
cal applications involve the Fraunhofer regime. If the split-step Fourier-domain
method is used to solve the FPE, there is no practical reason to approximate
the propagation operator. However, spatial-domain implementation of the
di�raction operator is a �nite di�erence method that does have advantages for
propagation over very large distances in varying media.
The Fresnel region is much more challenging, although the practical problems

that require near-�eld treatment are largely con�ned to focusing systems. In
principle Fourier-Domain methods can be used, but the sampling requirements
are de�ned by wavelength. An exception is computation of the �eld near the
Focal plane of an imaging system, which violates narrow-angle scatter, but still
satis�es a stationary phase condition that makes the Fourier-transform relation
work. The following numerical examples of Fraunhofer and Fresnel di�raction
illustrate the generality and limitations of Fourier-domain methods.

3.0.2 Fraunhofer Di�raction

The �rst example uses a zero-phase starting �eld de�ned in a plane. A uni-
form circular \top hat" is a convenient realization because it admits an exact
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transform:

b (x0; �) =D=2ZZ
�D=2

exp f�i���g d�

=

DZ
0

�

2�Z
0

exp f�i�� cos�g d�d�

=
2�

�2

�DZ
0

�J0 (�) d� =
2�D

�
J1 (�D) : (36)

From (30), the �eld in the focal plane of a lens is

 (f; &) � 2�fD

k&
J1 (k&D=f) :

The standard estimate of the focal spot size

d = 1:22�f=D; (37)

follows [4, Equation (4-32)].
Consider a uniform circular 0:46 � source with diameter D = 68:56 mm,

which is the maximum extent of the lens used in the ray-trace example. Stan-
dard discrete Fourier transform (DFT) sampling requirements establish the re-
lation

�L�K =
2�

N
:

Since the power-spectrum of the complex wave�eld is invariant to propagation,
the source �eld determines the sampling interval. In the far-�eld the beam
will expand at a rate dictated by the angular extent of the Fourier-transform
of the disc normalized to wavenumber. Since the expanding beam must stay
within the computation grid to minimize edge e�ects, a span of 5D was used
to accommodate a propagation distance of 10 m. Note that although D=� =
1:5� 105, adequate sampling was achieved on a 4096� 4096 grid with �=dy =
�=dz = 364.
Figure 4 shows a the vertical plane intensity for 50 logarithmically spaced

propagation steps. The �eld has been normalized to its on-axis peak, which
should be constant when the Fraunhofer limit is achieved. Logarithmic propa-
gation steps were used to capture the evolution from the near �eld to the far-�eld
limiting form. One can verify that the sidelobes are predicted by the Fourier
transform of the disk. It is interesting that in the point-spread function in the
focal plane of a lens (30) has the same shape.
Each computation step requires forward and inverse DFTs with in interven-

ing matrix multiplication. The computation used approximately 20 s per step
on a 64-bit, dual-processor PC with 8 GBytes of memory.
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Figure 4: FPE computation of the forward propagation of an unfocused circular
spot. The �eld intensity is a vertical slice of the two-dimensional �eld multiplied
by the square of the propagation distance.

If one were interested only in free-space propagation, the computation of
the far-�eld limit would be of academic interest. However, if the propagation
medium is structured, the split-step method can accommodate the e�ects of the
structure without further approximation.

3.0.3 Fresnel Di�raction

Fresnel di�raction is best illustrated by the development of a focus as a �eld
propagates from the plane of the aperture stop. Goodman presents examples
of Fresnel di�raction from the aperture stop itself (Section 4.5), but this is
intrinsically part of the much more demanding calculation of the nonuniform
�eld entering the aperture stop. The ray-optics example used computed optical
paths to the focal plane to estimate this �eld. For our purposes here the top-hat
form with an appropriate phase variation will be used. The spherical wave to
aperture distance might be used as a surrogate:

 (�) = exp
n
ikf

�
1�

p
1� �2=f2

�o
for � < D=2: (38)

On the other hand, the Fresnel approximation shows that an aperture distribu-
tion with quadratic phase, namely

 (�) = exp
�
ik�2= (2f)

	
for � < D=2; (39)

is consistent with the Fourier-transform relation between the uniform aperture
and the focal-plane PSF. The aperture �elds (38) and (39) are nearly equal for
large f=D ratios.
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Figure 5: Spectral density function plotted against normalized spatial wavenum-
ber for qadratic-phase starting �eld.

Sampling requirements are driven by the extreme phase variation at optical
frequencies (k > 105). This is not surprising that near-wavelength sampling
is necessary considering that the distribution of Huygens-Fresnel sources are
close to the initiation. A near-wavelength source sampling is also necessary for
the Huygens-Fresnel construction; however, the computation can be con�ned
to the small support of the point spread function. Trial and error showed
that sampled �elds similar to the Fraunhofer example could be used only for
wavelengths in the millimeter range. The focal length and aperture size were
adjusted to provide a large aperture in wavelengths. The possibility of moving
the reference plane closer to the focal plane was not explored.

To demonstrate the sampling requirements, Figure 5 shows focal-plane spec-
tral density plotted against wavenumber normalized by k. An aperture diam-
eter of 60 mm was used with k = 10 reciprocal millimeters (f = 477:5 GHz).
The quadratic source �eld de�ned by (39) with f = 140 mm was used. The
signi�cant portion of the spectral intensity occupies nearly 50% of the range of
non-evanescent waves, which is well beyond the narrow-angle scatter limits.
Even so, the �eld in any forward plane can be computed by applying the

Fourier-domain propagator. Figure ?? shows a vertical-plane cut of the �eld
intensity computed at 111 planes centered on the nominal focal distance and
separated by 1 mm. The x distance is measured from the exit plane, which
accounts for the displacement from 140 mm. Figure 6 shows the detail of
the Focal plane intensity. It is imperceptibly di�erent from the scaled Fourier
transform of the Fourier-transform of the aperture stop as predicted by (30).
The assistance of Dennis Hancock in clarifying concepts and optical method-

ology is gratefully acknowledged. http://dennishancock.com/
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Figure 6: Focal plane �eld intensity.
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