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Abstract

This note summarizes unbounded power-law phase screen results. The
computational detalis are presented separately.

1 Introduction

The statistical theory of scintillation presents a hierarchy of �rst-order di¤er-
ential equations that individually characterize the complex �eld moments of all
orders. A discussion of the speci�c form of the moment equations and their
relation to other published results are discussed in
http://chuckrino.com/wordpress/wp-content/uploads/2011/05/BookNotesCh32.pdf

Each equation has two additive terms. One characterizes the free-propagation
of the particular moment. The second characterizes the interaction of the
particular moment with the refractive index structure. The structure of the
refractive index is characterized by structure functions. If the structured re-
gion is represented by an equivalent phase screen, the equation for the spectral
density function of the �eld intensity takes a compact analytic form:

�I(�) =

ZZ
[exp

�
�lpk2g

�
�; ��2F

�	
� 1] exp f�i� � �g d�: (1)

where

g (�1; �2) = 8k
2

ZZ
��n(0; �) sin

2 (� � �1=2) sin2 (� � �2=2) d�=(2�)2: (2)

Subtracting 1 from the integrand e¤ectively removes the mean intensity. It
follows that

SI2 =< I2 > �1 (3)

=

ZZ
�I(�)d�= (2�)

2 (4)
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2 Structure Model

To accommodate oblique propagation the FPE is rewritten in a continuously
displaced coordinate system (CDC). As discussed in Chapter 4 of Rino [1],
geometric dependence of the path integral in the CDC system can be accommo-
dated by replacing ��n(0; �) with ��n(tan �bakT � �; �). The e¤ect is to replace
�2 with a quadratic form. A general inverse-power-law SDF form is constructed
as

��n(q) = Cs'(q); (5)

where

'(q) =

�
q�p1 q < q0
qp2�p10 q�p2 q > q0

: (6)

With some substitutions and manipulations

�I(�=�F)=�F =

ZZ
[exp

�
�Up1�2 (�; �)

	
� 1] exp f�i� � �g d�: (7)

where

 (�; �) = 8

ZZ �
{�p1 { < q0

{p2�p10 {�p2 { > q0
sin2 ({ � �=2) sin2 ({ � �=2) d{=(2�)2

(8)

U = C
1

p1�2
p �F (9)

Cp = k
2lpCs (10)

2.1 Single Power Law

The two-component power-law model becomes an unconstrained single compo-
nent power-law when p1 = p2. If p1 = 0, the transition wavenumber q0 is
e¤ectively an outer scale. The single unconstrained single power-law admits an
analytic form for  (�; �):

 (�; �) = C(p)h (�; �) (11)

where

C(p) =
Cp�(p1=2� 1)

2��(p1=2) (p1 � 2) 2(p1�3)
(12)

and

h (�; �) = 2 j�jp1�2 + 2 j�jp1�2 � j� + �jp1�2 � j� � �jp1�2 for p1 6= 4: (13)

The sign change of �(p1=2� 1) when p1 exceeds 4 is the only formal change in
the result.
One can use the limiting form K0 (x)! � lnx to obtain a result at p1 = 4,

but limit is not consistent when evaluated from the result for p1 > 4. Aside from
p1 = 4, the result is identical to the result derived by Rumsey [2]. The correct
manipulation of the limiting forms of derivatives of modi�ed Bessel functions
resolves a long standing disparity noted in [3].
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2.2 Two-Dimensional Models

The two-dimensional counterpart to the single power-law model is summarized
as follows:

�I(�;U; �F ) =

Z 1

�1
(exp

�
�Up�1 (�=�F ; ��F )

	
� 1) exp f�i��g d� (14)

U = C
1

p�1
p �F (15)

Cp = k
2lpCs (16)

 (�; �) = 8

Z 1

�1
Cp' ({) sin2 ({ � �=2) sin2 ({ � �=2) d{=(2�) (17)

If ' ({) = {�p,

 (�; �) = C(p)h (�; �) (18)

where

Cp(p) =
Cp � ((3� p) =2)p
��(p=2) (p� 1) 2p�1 : (19)

The scalar forms are obtained from the vector forms by replacing the vector
variables with their one-dimensional scalar equivalents.

3 Limiting Forms

3.1 Weak Scatter U ! 0

With  (�; �) speci�ed it is still necessary to use numerical integration to com-
pute �I(�;U; �F ) and SI. However, it can be shown by direct computation
that

lim
U!0

�I(�;U; �F ) = 4Cp'(�) sin
2
�
�2�2F =2

�
: (20)

For the three-dimensional power-law

SI2 =
Cp�

p1�2
Fp

�2p1=2�1
� ((6� p1) =4)
� (p1=4) (p1� 2) for 2 < p1 < 6 , (21)

which agrees with (3.88) in Chapter 3 [1] when the substitution for p1 is made.

3.1.1 Two-Dimensional Model

With the same manipulations for the two-dimensional model

SI2 =
Cp�

p�1
Fp

�2(p�1)=2
� ((5� p))

� ((p+ 1) =4) (p� 1) for 1 < p < 5.
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This can be derived from the three-dimensional form by replacing p1 by p1 + 1
and multiplying by 2. The doubling comes from the the di¤erence between
cylindrical coordinates and assuming no variation along the second axis.

3.2 Strong Scatter U !1
With a rede�nition of U for the single power-law model,

�I(�=�F)=�F =

ZZ
[exp

n
�Up1�2h (�; �)

o
� 1] exp f�i� � �g d�: (22)

where
U
p1�2

= Up1�2C(p); (23)

and

h (�; �) = 2 j�jp1�2 + 2 j�jp1�2 � j� + �jp1�2 � j� � �jp1�2 for p1 6= 4: (24)

For large U , the contributions to �I(�=�F)=�F must come from small values of
h (�; �), which suggests a Taylor series expansion on the �:

h (�;uq) ' 2 j�jp1�2 �
(p1 � 2)

�
�2 + (p1 � 4) (u � �)2

�
q4�p1

; (25)

which agrees with (32) in Rino [3] when substitution for p1 is made.
For 2 < p1 < 4, only the �rst term in (25) servives. It follows that

�I(uq=�F)=�F =

ZZ
[exp

n
�2Up1�2 j�jp1�2

o
� 1] exp f�iuq � �g d�: (26)

The integral is not amenable to further analytic simpli�cation, but one can show
that

SI2 =

ZZ
�I(�=�F)=�F

d�

(2�)
2 = 1: (27)

The scintillation can exceed unity with increasing U , but ultimately it will come
back to the Rayleigh limit of unity.
For 4 < p1 < 6, the second term in (25) dominates. The resulting integral

can be evaluated analytically:

�I(uq=�F)=�F =
�q4�p1p

(p1 � 3) (p1 � 2) 2U
p1�2 exp

�
� q6�p1

4 (p1 � 2) (p1 � 3) 2U
p1�2

�
(28)

It can also be shown that

SI2 =
2
p
(p1 � 3)
6� p1

: (29)

These results agree with (37) in Rino [3], but (39) is a factor-of-two larger. The
error was carried to (3.100) in Chapter 3 of Rino [1].
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3.2.1 Two-Dimensional Results

Following a parallel development

�I(�;U; �F ) =

Z 1

�1
(exp

�
�Up�1 (�=�F ; ��F )

	
� 1) exp f�i��g d�: (30)

where
 (�; �) = C(p)h (�; �) (31)

and

h (�; �) = 2 j�jp�1 + 2 j�jp�1 � j� + �jp�1 � j� � �jp�1 for p 6= 3: (32)

For large U ,

h (�; q) ' 2 j�jp�1 � (p� 1)(p� 2)�
2

q3�p
(33)

For 1 < p < 3

�I(q=�F )=�F =

Z
[exp

n
�2Up�1 j�jp1�2

o
� 1] exp f�iq�g d� (34)

and SI ultimately converges to unity.
For 3 < p < 5

�I(q=�F )=�F =

Z
exp

(
� (p� 1)(p� 2)2U

p�1

q3�p
�2

)
exp f�iq�g d�

=

s
�q3�p

(p� 1)(p� 2)2Up�1
exp

�
� q5�p

4(p� 1)(p� 2)2Up�1
�

(35)

Similarly,

SI2 = 2
p
�

Z s
q3�p

(p� 1)(p� 2)2Up�1
exp

�
� q5�p

4p� 1)(p� 2)2Up�1
�
dq

2�

=
1p
�

Z
exp

�
� q5�p

(p� 1)(p� 2)2Up�1
�
d

q(5�p)=2q
4(p� 1)(p� 2)2Up�1

=
1

5� p
1p
�

Z
exp

�
�u2

	
du =

1

5� p (36)

This result is also di¤ers by a factor-or-two from (10) in Rino [4].
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