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Abstract

Global observation of the GPS satellite constellation for ionospheric
diagnostics is now a worldwide activity driven by both practical and
scienti�c objectives. Diagnostic methods exploit a frequency-dependent
phase change, which is proportional to the path-integrated electron den-
sity (TEC). However, intermediate-scale structure causes a stochastic
modulation of the GPS signals (scintillation), which is a nuisance for
data assimilation. Indeed, su¢ ciently strong propagation disturbances
degrade TEC and ultimately disrupt GPS operations altogether. How-
ever, the physical processes that generate intermediate-scale structure are
intimately part of ionospheric physics. In the best of all possible worlds
irregularity identi�cation and classi�cation would be an integral part of
ionospheric diagnostics.

This paper explores the relation between intermediate-scale structure
and tomographic reconstruction as a means of interpreting propagation
measurements. To provide a representative but computationally manage-
able analysis framework, two-dimensional simulations of highly elongated
structure are used. The challenge is to provide representative realizations
of large- and intermediate-scale structure.

1 Introduction

The entire earth�s ionosphere is accessible to monitoring via GPS signals re-
ceived by low-earth-orbiting (LEO) satellites and LEO or GPS satellite signals
received by �xed ground stations. The GPS-to-LEO observations intercept the
ionosphere preceding or following occultations. By measuring the refraction
that occurs during the occultations a formal inversion operation extracts an es-
timate of the electron density height pro�le. Additionally, multi-station obser-
vations can be processed to estimate structure via tomographic reconstruction.
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Interpretation of remote sensing observations starts with a forward calculation
of the interaction of the transmitted electromagnetic (EM) wave with the inter-
vening medium. The theory of EM wave propagation in weakly inhomogeneous
(transparent) media is well understood. Hi �delity forward computations can
be performed with structure realizations that contain large-scale deterministic
background structures and stochastic intermediate-scale structure with scales
from hundreds of kilometers to hundreds of meters.
In the absence of scintillation, which is a manifestation of enhanced interme-

diate scale structure, signal phase is proportional to the path integral along the
ray connecting the source to the receiver. This simple relation makes it possible
to obtain a linear relation between measured phase and the in situ contributions
along the source-to-receiver path. A collection of discrete measurements can be
represented by a linear relation between the measurement vector and a vector
arrangement of parameters that de�ne local structure contributions. A model
matrix is de�ned by the ray geometry and the formal representation of the in
situ structure. For typically accessible geometries, the model matrix is poorly
conditioned. Thus, reconstructions must constrain the solution space, which is
comprised of all con�gurations that support the measurements. Constrained re-
constructions are not unique. Moreover, they acutely sensitive to model-matrix
errors. Even so, so called tomographric reconstruction is playing an increasingly
important role in ionospheric physics.
This paper uses two-dimensional simulations to explore the accessible scale

range for ionospheric tomographic reconstruction and is sensitivity to propaga-
tion disturbances. It is well known that scintillation, which is a manifestation of
enhanced intermediate-scale structure, induces a more complicated relation be-
tween measurements and the contributing path-integrated structure. In e¤ect,
the very process that makes remote sensing possible distorts the tomographic
measurement ideal. To introduce the problem, consider the formal process by
which electromagnetic (EM) waves interact with small local inhomogeneities.
Let  (x; &) represent the complex �eld at frequency f . The x direction here
is the propagation axis. The variable & is in the plane perpendicular to the
propagation direction. In free space one can show by direct computation that
the following propagation operation satis�ed the Helmholz equation exactly:1

 (x+ xm; &) =

ZZ b (xm;�) expfikg(�) jx� xmjg
� expfi��&g d�

(2�)
2 ; (1)

where b (xm;�) = ZZ  (xm; &) expf�i� � �gd�; (2)

1Hemholtz equation can be written as

r2 + k2 = 0:
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is the two-dimensional Fourier decomposition of the �eld at xm,

kg(�) = k

q
1� (�=k)2; (3)

and k = 2�f=c = 2�=� is the magnitude of the wavevector

k = [kg(�); �] : (4)

The limit
lim
x!xm

( (x+ xm; &)�  (xm; &)) = (x� xm) ; (5)

de�nes the di¤erential form of the forward propagation operator:

@ (x; &)

@x
= ik� (x; &): (6)

With �n(x; &) representing a local variation in the refractive index, the complete
forward propagation equation (FPE) is [1, Chapter 3]

@ (x; &)

@x
= ik� (x; &) + ik�n(x; &) (x; &): (7)

The ideal tomographic relation is realized when the di¤raction operator ad-
vances the �eld forward without modi�cation. Formally, the di¤raction opera-
tor � replaced with the identify operator I. The solution to (7) is

 (L; &) = exp

(
ik

 
L�

Z L

0

�n(x; &)dx

!)
: (8)

However, a coherent receiver measures phase with respect to a local oscillator.
Thus, the �eld measured by a coherent receiver is

 k(L; &) =  (L; &) exp f�ikLg

= exp

(
�ik

Z L

0

�n(x; &)dx

)
: (9)

Rewriting the FPE to generate  k(L; &) directly,

@ k(x; &)

@x
= ik (I ��) k(x; &) + ik�n(x; &) k(x; &): (10)

For modeling purposes, ideal tomographic measurements would reproduce solu-
tions to

@ k(x; &)

@x
= ik�n(x; &) k(x; &); (11)

from which the path-integrated phase can be extracted. There is no mea-
surement that adheres to this ideal exactly. As already noted, the di¤raction
process that carries the signal to the receiver distorts the signal phase. The
amount of distortion depends on the �eld structure, the operating frequency
and the propagation distance. Structure in the intermediate scale range (100
km to 100m) is the source of scintillation above 100 MHz.
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1.1 Oblique Incidence

Figure (1) shows a schematic representation of a satellite-to-ground propagation
path through a disturbed region. The origin of the reference coordinate system
is �xed at some convenient location in the disturbed medium. The ray from the
source to the receiving antenna phase centers is a formal reference for compu-
tation. The means of centering the computation on the reference path will be
described later. However, the FPE is integrated, the geometry and structure
con�guration is assumed to be frozen. In physical space the time interval is the
transmission time from the source to the receiver, which is the primary GPS
measurement. It should be noted that the FPE applies to each transmitted fre-
quency separately. The frequency dependence of the refractive index introduces
a group delay that must be compensated. With multi-frequency measurements,
the ionospheric contribution can be estimated for bias correction and recorded
for ionospheric diagnostic measurement, as already noted.
Over short time intervals the satellite motion vector is constant. Over such

an interval the time-series measured by a receiver in the observation plane can
be interpreted as a translation of the coordinate system through the structure.
Drift motion o¤sets the e¤ective translation velocity. The resulting purely geo-
metric transformations are particularly convenient for interpreting propagation
through highly anisotropic �eld-aligned structure. Most scintillation analyses
assume invariant geometry and frozen structure for a period long enough to
resolve the frequency content of signal intensity and phase variations. For this
type of analysis the satellite motion is e¤ectively replaced by step changes. Al-
lowing the steps to overlap provides common segments to check the magnitude
of the changes. Changes within the processing interval distorts the space to
time translation and any subsequent interpretation.

1.2 Wavefront Curvature

To fully accommodate propagation from a compact source the �eld incident
upon the structure would be used to initiate the forward integration. However,
satellite antenna patterns are di¢ cult to acquire and use because they depend
on the attitude of the satellite as well as its location. For a well-designed
system, locally spherical incident wave illumination is a good approximation
in the absence of distorting multipath re�ections. The dominant e¤ect of a
spherical incident wave�eld is a dilation of the �eld. The dilation can be
accommodated by scaling the transverse measurement grid by the ratio of the
product to the sum of the source to reference and reference to ground distances.
The limit is a uniform plane-wave �eld, which is the simplest excitation �eld.
The tomographic computation of the path integration uses the starting and end
points of each measurement. In that case, the diverging rays map the spherical
wavefronts. For simulations that use uncompensated plane-wave excitation,
the rays that de�ned the path integration are parallel.
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Figure 1: Schematic representation of oblique propagation through highly struc-
ture media.
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1.3 Structure Models

The �nal consideration for simulations is the structure model itself. Physics
based models can accurately reconstruct the large scale plasma con�guration.
The distribution of embedded intermediate-scale structure and its power-law
characteristics are areas of active research. Moreover, highly �eld-aligned struc-
ture is formally stochastic only in the cross-�eld direction. Since the focus of
this paper is the rami�cations of intermediate scale structure on tomographic
reconstruction, representative models su¢ ce. Ideally, estimation of local struc-
ture would be part of the tomographic inversion process.

2 Propagation Simulations for Tomographic Re-
construction

To solve (10) for the geometry shown in Figure (1) e¢ ciently, the incident
�eld must be con�ned to a narrow range of propagation angles. Following the
example in the Introduction, this is achieved by �rst centering the incident �eld
on the reference propagation direction:

 k(x; &) =  (x; &) exp f�ik [cos �; bakT ]g ; (12)

where bakT is a unit vector along the transverse projection of the propagation
operator. The next step introduces a sliding origin, e¤ectively a continuously
displaced coordinate system (CDSC) terminating

R0(x) = [x; tan �bakT x] : (13)

With accommodation for the centering and CCD operations, the di¤raction
operator becomes

 k (x; �) =

ZZ b k(0;�) expfi (k cos � � g(�+ kT )+ tan �bakT � �)xg
� expfi� � �g d�

(2�)
2 : (14)

In the CDC system (10) becomes

@ k(x; &)(x; �)

@x
= ik (cos � ��k) k(x; &)(x; �)+ik sec ��n(x; �� tan �bakT x) k(x; &)(x; �):

(15)
The relation between & and � is

� = &+tan �bakT x: (16)

This is a modi�cation of the form given in Chapter 4 of The Theory of Scintillatio
with Applications in Remote Sensing,[1] which does not include the reference
wave o¤set.
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2.1 Refractive Index Realization

The refractive index variation that drives propagation e¤ects is formally repre-
sented as

n(�) = n(�)(1 + �n(�)=n0); (17)

where n(�) represents a deterministic pro�le function and (1 + �n(�)=n0) is a
modulation imposed by smaller scale stochastic structure. At frequencies above
100 MHz, the ionospheric refractive index variation is a frequency-dependent
mapping of the electron density:

n(�) ' 1� 2�reNe(�)=k2: (18)

In phase units,

k�n(�) ' �2�reNe(�)=k
= � (rec)Ne(�)=f , (19)

where re = 2:819740289e�15m and c is the speed of lignt (299792458 mps). It
is conveneint to write the phase perturbation in terms of a conversion factor K
de�ned as

K =
rec

2�
� 1016

= 1:3454� 109: (20)

An change of 1016 electrons=m3 is called a TEC unit. In TEC units

k�n(�) = �2�KNe(�)=f radians/Hz/m (21)

where ! is the frequency in radians per second. It is customary to use this
relation to convert measured pathe-integrated phase to TEC units:

TEC = �f�= (2�K) (22)

The deterministic component n(�) can be constructed from physics-based
models. The simplest form is a Chapman layer. The structure component is
usually constructed by imposing a power law weighting on uncorrelated samples
via Fourier transformation. This necessarily produces uniform statistics over
the transformation volume. More realistically, the structure would vary over
the volume in respons to the background con�guration. A con�guration space
model can accommodate such variation as well as �eld-aligned anisotropy. For
the purposes of this initial study, only uniform stochastic structure will be use.

3 Two Dimensional Propagation

Figure 2 is a schematic representation of a two dimensional con�guration. The
the solution of the FPE in continuously displaced coordinates captures the struc-
ture within the parallelogram that de�nes the displaced coordinate boundaries
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Figure 2: Scematic representation of planar geometry for tomographic recon-
struction.

relative to the source direction. Solving the FPE generates a realization of
the �eld over an extended region centered on the reference ray, �Y=2 <=
y � x tan � < Y=2. The central ray and the two bounding rays are shown
in red. As noted in the introduction, for plane-wave excitation, the ray paths
are parallel.
The parallel rays that connect each point in the measurement plane at the

exit plane of the layer are de�ned by their termination point y,

� (y; �) =
2�

�
sec �

Z L

0

�n(�; y � � tan �)d�: (23)

Ideal tomographic reconstruction would be based on the following linear map-
ping relation

�jk =
2�

�
sec �

Z L

0

�n(�; k�y � � tan �j)d� (24)

where k is parallel ray index and j is the receiver index.
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3.1 Di¤raction

To calculate the wave �eld at the observation plane, the following form of the
FPE is used:

@ k(x; y)

@x
= ik(I ��k) k(x; y) + ik sec ��n(x; y � tan �x) k(x; y): (25)

where

� k(x; y) =

Z b k (xn;�y) exp fi ((kg(�y + k sin �)� k cos � + tan ��y)) dxg
� exp fi�yyg

d�y
2�

: (26)

For split-step integration, the phase perturbation at the exit plane of each prop-
agation step is computed from the electron density realization converted to re-
fractive index variations �n(x; y)

� (y; �) =
2�

�
sec �

Z x+�x

x

�n(�; y � � tan �)d� (27)

3.1.1 Edge Discontinuities

At each propagation step the intercepted structure increment must centered on
the reference propagation direction per (27). The shift could be accommodated
by increasing the size of the realization, but truncating the new data in the com-
putation window introduces edge discontinuities. Edge discontinuities initiate
spurious propagation into the propagation space. Tapering the illumination
�eld suppresses the edge contributions, although the taper is arti�cial. Ideally,
a non-re�ecting boundary condition would be imposed, but the procedures are
complicated.2 A simpler procedure uses a period shift of the structure, which
is automatic if the shift is implemented by imposing a phase ramp on the DFT.
Although periodic structures eliminate edge discontinuities, they create their
own peculiarities. Over typical layer dimensions the displacement can be large
enough to move a central feature to the edge of the data window. The extent
of the refractive index realization determines the maximum propagation angle
that can be processes without such wraparound, aothough computation for a
genuinely periodic structure would be exact.

4 Tomographic Reconstruction

Reconstruction of the in-situ structure from (24) requires a discrete model for
�n(�; y � � tan �). A two-dimensional Fourier decomposition provides insight.

2Absorbing non-local boundary conditions are discussed in Chapter 8 of Levy [2]

9



Let

�n(x; y) =
1

NM

N=2�1X
n=�N=2

M=2�1X
m=�M=2

c�nnm exp fi (n��xx+m��yy)g ; (28)

where ��x = 2�= (N�x) and ��y = 2�= (M�y). Upon substituting (28) into
(24) it follows that

�jk =
2�

�
sec ��x

N�1X
n0=0

�n(n0�x; k�y � n0�x tan �j)

=
2�

�
sec ��x

1

NM

N=2�1X
n=�N=2

M=2�1X
m=�M=2

c�nnm
�
N�1X
n0=0

exp f2�in0=N (n�m (��y=��x) tan �j)g exp f2�im=M (k�y)g :

(29)

Evaluating the summation over n0 and computing the Fourier decomposition of
� (y; �) over the y variable leads to a linear relation for each horizontal mode
index by m:

b� (m��y; �) =
24 1
N

N=2�1X
n=�N=2

� (n;m (��y=��x) tan �)c�nnm
35 (30)

where

�N (n;m
) =
2� sec �L

�

exp f2�i (n�m
)g � 1
N exp f2�i (n�m
) =Ng � 1 : (31)

The (30) summation in square brackets can be written as the vector inner prod-
uct: b�jm = 1

N
�jTm

c�nm; (32)

where b�m is an Nj � 1 indexed column vector, and �m is an Nj � N indexed
matrix with elements �N (n;m (��y=��x) tan �j). The linear relation applies
independently to each indexed y Fourier coe¢ cient. The m-indexed systems of
linear equations comprise a model for tomographic reconstruction.

4.1 SVD Reconstruction

The Fourier coe¢ cients can be estimated from the data vectors b�m. However,
the model matrix is generally poorly conditioned. Single-valued decomposition
(SVD) provides a means of extracting an approximate solution that most closely
represents the model relation. Applying SDV, �m can be written as

�m = USV 0; (33)
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where S is diagonal with the same dimension as �m, U is a unitary matrix with
the column dimension, and V is a unitary matrix with the row dimension. A
modi�ed pseudo inverse is constructed replacing the diagonal elements with

S0n = S(n)=
�
S2(n)� �2

�
; (34)

whereby
��1m = V S0U 0: (35)
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