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Abstract

Processing low orbiting beacon satellite data has been a challenge
largely because of the limited vehicle space for a VHF, UHF, L-band
antenna system. The e¤ective antenna patterns severely limit range of
uniform illumination range with a common phase center. Low SNR,
particularly at acquisition severely, constrains phase-locked-loop (PLL)
performance. However, with post-pass processing substantially more
processing can be devoted to the critical frequency tracking operation.
Several schemes have been used e¤ectively to construct a narrow band �l-
ter centered on the Doppler frequency de�ned over a local time segment.
An analysis of these procedures was presented in a paper Digital Sig-
nal Processing for Ionospheric Propagation Diagnostics, by Rino, Groves,
Carrano, Gunter, and Parrish.

In the paper it was hypothesized but not demonstrated that typi-
cal PLL performance was degraded for SNRs below 10 dB to the point
that direct frequency estimation was a preferable alternative. This note
implements a second-order PLL for direct comparison to the frequency-
hypothesis tracker described in the paper.

1 Introduction

Phase locked loops (PLLs) have been used since the early development of radio.
Critical paper collections [1] and books [2] cover the early subject matter, which
includes nonlinear feedback and stochastic di¤erential equations. Contributions
have been made by information theory pioneers such as H. L. Van Trees and
A. J. Viterbi. The subject matter can be intimidating, but software emulators
are readily constructed for analysis and, with software de�ned radio, direct
implementation.
An application of particular interest is processing radio signals from earth

orbiting satellites. In free space the changing path between the source and
receiver induces a time-varying phase change. The earth�s ionosphere induces
an additional phase change and, under disturbed conditions, a random complex
modulation. To demodulate the signal the slowly varying carrier frequency
o¤set must be estimated.

1



The following signal model captures the essential elements of the problem:

v (k) =
p
SNR(k)m (k) exp

8<:i
0@!0k�t+ k�tZ

0

! (t0) dt0

1A9=;+ &(k): (1)

The �rst term in the exponential argument is the phase progression of the con-
stant center frequency f0 = !0=(2�). The second term is the a phase variation
represented as the integral of a slowly changing instantaneous frequency, !(t).
The signal amplitude is de�ned by the signal-to-noise power ratio, SNR(k),
which includes path and system losses as well as antenna and ampli�er gains.
The componentm (k) represents modulation imparted at transmission. The

average intensity of the modulation is constrained to unity for consistency with
the SNR de�nition. Critical sampling at BW > 1=�t Hz captures the mod-
ulation frequency content plus the extremes of !(t). The term &(k) is a unit
variance zero mean uncorrelated complex random sequence representing receiver
noise. A more complete model would include an additional complex modula-
tion induced by propagation disturbances. The simpler model is adequate for
PLL evaluation.
The �rst signal processing operation is estimation of the phase progression

represented by the integral in the argument of the exponential. Three time
scales are involved, the sample interval �t has already been introduced. The
duration of the modulation T is the interval for matched �lter processing. Let �e
represent the time scale for change in ! (t). The noise background ideally is un-
correlated over intervals greater than �t. To the extent that �t� T � �e, the
demodulation operation produces a processing gain approaching 10 log 10(T=�t)
dB.
For the purpose of common de�nition the processor, which may include a

PLL, operates on a sliding block of N complex data samples. The samples
processed in the mth block are

km = mN(1�O=N) + k for 0 � k � N � 1; (2)

where O is the number of o¤set samples, which can vary from 0 to N . The
processor can also use it�s current estimate of the reference signal, vr(k), for
feedback constructed such that

v�r (k)v(k)= jv(k)j ' 1. (3)

For a phase locked loop O = 0 and N is the order of the loop transfer function,
which is typically less than 3. Direct frequency estimation uses much larger
N values with overlap. From a purely information theoretic perspective, using
larger processing blocks should provide better frequency/phase estimates. The
purpose of this note is to demonstrate this by direct comparison.
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Figure 1: Functional diagram of PLL.

2 Phase Locked Loops

A phase locked loop (PLL) has three functional elements, namely a phase detec-
tor, a loop �lter, and a voltage controlled oscillator (VCO) connected as shown
in Figure (1). The current value of vr(k) = exp fi�e(k)g is the reference for the
new input v(k + 1)= jv(k + 1)j.
To generate a realization of the complex data stream integration of the in-

stantaneous frequency over the sample interval must be approximated. Two
approximation follow:

t+�tZ
t

! (t0) dt0 '
�

! (t)�t
(! (t) + ! (t+�t)) �t2

(4)

For signal generation the more accurate trapezoidal rule is used. For digital
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VCO operation the integral is approximated by direct summation:

vr(k) = exp

(
�i
 
!rk�t+K

k�1X
n=0

y(k)�t

!)
: (5)

The feedback signal y(k) is used to vary the oscillator frequency !r.
The phase detector �rst multiplies the normalized input signal by the com-

plex conjugate of the reference signal (5):

vc(k) =
v(k)

jv(k)jv
�
r (k)

= exp

(
i

 
kX

n=0

!(k)�t�K
k�1X
n=0

y(n)�t

!
:

)
The phase of vc(k) is de�ned by the arctangent operation

�e(k) = atan2( Im (vc(k)),Re (vc(k))). (6)

Digital IIR �lters are de�ned by two sets of coe¢ cients A(n) and B(n) such
that

y(k) =

N�1X
n=0

B(n)�(k � n) +
N�1X
n=1

A(n)y(k � n) (7)

The A(n) coe¢ cients act on previously computed outputs, which must be re-
tained.

2.1 Software Implementation

The VCO phase includes a starting phase to o¤set the center frequency and a
correction term

�r(k) = !rk�t+K
k�1X
n=0

y(k)�t: (8)

To isolate the starting frequency o¤set uncertainly let

!r = !0 � �: (9)

The phase detector output is the di¤erence between the input signal phase and
the VCO phase;

�e(k) = �v(k)� �(k)

= e�v(k)�K k�1X
n=0

y(k)�t; (10)

where e�v(k) = kX
n=0

!(k)�t+ �k�t: (11)

Software implementation proceeds as follows:
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1. �(k) = !r�tk +��

2. vr = exp fi�(k)g;

3. vc = v(k) � conj(vr);

4. �e =atan2( Im(vc),Re(vc));

5. Loop Filter �e ! y

6. VCO Filter y ! ��

The most commonly used con�gurations of the loop �lter and the VCO are
�rst-order �lters with z transforms

H(z) =
b0 + b1z

�1

1 + a1z�1
: (12)

Each �lter implementation requires one storage register, v0:

1. v1 = v0;

2. v0 = xin �v1 � a1;

3. yout = v0 � b0 + v1 � b1;

The PLL operation is completely speci�ed by the sample rate, �t, the nom-
inal VCO frequency, !r, and the two sets of �lter coe¢ cients. The loop �lter
H(z) and the VCO �lter N(z) can be implemented as a combined �ltering op-
eration H(z)N(z), whereby the software implementation can be formulated as
a single �ltering operation.
Modern signal processing technology has made it possible to think of (1) as

a de�ning relation. As a generic signal consider an in�nite complex series u(k).
The two-sided z transform is de�ned as

U(z) =

1X
k=�1

u(k)z�k: (13)

Negative indices represent signal samples earlier that the reference time k = 0.
The properties of the z-transform and its inversion follow from complex variable
theory built on the Cauchy integral formula. Important properties include
multiplication of z-transform to evaluate �ltering operations such as (7). If the
series is delayed by n steps, the corresponding z transform is multiplied by z�n.
The frequency response of the �lter is de�ned by the Fourier series obtained

by the replacement z = exp fi!k=
g:

UP (!) =
1X

k=�1
u(k) exp fi!k=
g : (14)

5



The function UP (!) is periodic over the radian frequency interval �
=2 < ! <

=2. The periodic function can be formally identi�ed with an aliased continuous
transformation:

UP (!) =
1X

m=�1
U (! +m
) : (15)

Ideally UP (!) ' U (!) for j!j < 
=2.
Optimum �lter design could proceed directly from the z and Fourier trans-

forms. However, �lter design generally proceeds from Laplace/Fourier trans-
form space rather than the z/Fourier series representations that characterizes
sampled data. The transformation

u=2 = tan�1(�!=
); (16)

maps the in�nite frequency range �1 < ! <1 onto ��=2 � u � �=2. From
the identity

s =



�

(exp(�iu=2)� exp(�iu=2))
exp(�iu=2) + exp(�iu=2) ; (17)

where s = i!, it follows that the transformation

s =
2

T

1� z�1
1 + z�1

; (18)

where T = 2�=
, maps the in�nite frequency response onto the frequency range
supported by the z transformation. Moreover, it can be shown that the left
and right complex half planes map to the inside and outside the unit circle in
the complex z domain. Thus, non-linear (warped) mapping of a �lter trans-
fer function de�ne over j!j < 
=2 to the corresponding range of u via (16),
preservers the desired frequency response. The phase response of the analogue
�lter is not preserved, but can be checked after the fact.
PLL analysis using continuous functions and �lter operations would lead to

the following Fourier-domain relations for the error signal and IIR �lter:

b�e(!) = be�v(!)�K by(!)
i!

: (19)

and by(!) = bF (!)b�e(!): (20)

Eliminating by(!) it follows that
b�e(!)=be�v(!) = 1

1 +K bF (!)=i! : (21)

The overall loop transfer function is de�ned as the VCO phase output divided
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by the input phase:

H(!) = b�(!)=be�v(!)
= 1� (Kby(!)=i!) =be�v(!)
=

K bF (!)=i!
1 +K bF (!)=i! : (22)

Optimum �lter design is based on the transfer function response and noise
rejection. Formally, a constrained optimization maximizes the signal responseZ

jH(!)j2 d!= (2�) ; (23)

while minimizing the noise responseZ
j1�H(!)j2 d!= (2�) . (24)

Early PLL literature derived optimum analog transfer. However, most appli-
cations use a �rst-order proportional plus �lter 1 . The loop �lter is de�ned
formally by two time constants, �1 and �2:

Fa(s) = (1= (s�1) + �2=�1) ; (25)

where s = i!. Applying the transformation (18)

Fz (z) =
(C1 + C2)� C1z�1

1� z�1 (26)

where

C1 = (�2=�1 � T= (2�1)) (27)

C2 = T=�1 (28)

The corresponding relations for the VCO integrator are

Na(s) = K
1

s
(29)

Nz(z) = K
T

2

1 + z�1

1� z�1 : (30)

For software implementation the loop �lter coe¢ cients are

bf0 C1 + C2

bf1 �C1
af1 �1

1http://www.liquidsdr.org/blog/pll-howto/
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The VCO coe¢ cients are
bv0 KT=2
bv1 KT=2
av1 �1

The loop transfer function is

Ha(s) =
2&!ns+ !

2
n

s2 + 2&!ns+ !2n
; (31)

where

!2n = K=�1 (32)

& = �2!n=2 : (33)

In terms of !n and &.

C1 =
�
2&!nT � (!nT )2 =2

�
= (TK) (34)

C2 = (!nT )
2
= (TK) (35)

Note that the loop gain in the VCO will cancelK. The de�ning parameters are &
and !n. Figure 2 show the loop transfer function for & = 0:7 and !n = BW=10.
The two peaks occur at �!n.
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Figure 2: Loop transfer function for integration plus loop �lter and integrator.
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2.2 Software PLL Examples

To illustrate the SNR dependent PLL performance, a 50 kH signal as de�ned by
(1) with m(k) = 1 was generated. A 10 kH frequency decreasing at 100 Hz per
second was applied. Figure 3 shows a zoomed intensity display of a spectogram
form with contiguous 2048 point unweighted periodograms. The full frequency
range is -25 kHz to 25 kHz. The input SNR is 0 dB. The ~50 dB intensity
peaks are due to the coherent processing gain achieved by the 2048 point Fourier
transformations. The intensity variation is caused by the signal passing through
the sinc functions that de�ne the discrete frequency resolution. Figure 4 shows
the second-order PLL results initiated with the correct frequency. The upper
frame is derived from the loop phase by di¤erentiation. The error curve is the
di¤erence between the derived frequency and the true frequency. Although the
loop is initiated with the correct starting frequency there is a transient while
the �lter pipes up.
Figures 5 and 6 show the frequency hypothesis tracker (FHT) for SNRs of

10 and 0 dB. The FHT implementation used 2048 samples with 1024 point
overlap. The FHT output is Doppler, but at a much coarser output than the
sampling interval. The FHT tracker recovers the Doppler with better than 1
Hz accuracy for both the 10 and 0 dB SNR signals. The 0 dB PLL output does
report a changing phase, but the error signals are outside the lock range.
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Figure 3: Spectogram of 10 kHz signal with a decrease of 100 Hz per second.

Figure 4: The upper frame is the derivitave of the PLL phase. The lower frame
is the di¤erence between the measured and true frequency.
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Figure 5: FHT Doppler and error for 10 dB SNR signal.

Figure 6: FHT Doppler and error for 0 dB SNR signal.
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