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Abstract We extend the power law phase screen theory for ionospheric scintillation to account for the
case where the refractive index irregularities follow a two-component inverse power law spectrum. The
two-component model includes, as special cases, an unmodified power law and a modified power law with
spectral break that may assume the role of an outer scale, intermediate break scale, or inner scale. As such, it
provides a framework for investigating the effects of a spectral break on the scintillation statistics. Using this
spectral model, we solve the fourth moment equation governing intensity variations following propagation
through two-dimensional field-aligned irregularities in the ionosphere. A specific normalization is invoked
that exploits self-similar properties of the structure to achieve a universal scaling, such that different
combinations of perturbation strength, propagation distance, and frequency produce the same results. The
numerical algorithm is validated using new theoretical predictions for the behavior of the scintillation index
and intensity correlation length under strong scatter conditions. A series of numerical experiments are
conducted to investigate the morphologies of the intensity spectrum, scintillation index, and intensity
correlation length as functions of the spectral indices and strength of scatter; retrieve phase screen
parameters from intensity scintillation observations; explore the relative contributions to the scintillation due
to large- and small-scale ionospheric structures; and quantify the conditions under which a general spectral
break will influence the scintillation statistics.

1. Introduction

Phase screen theory has been used extensively since the early works of Booker et al. [1950] and Hewish [1951]
to characterize the scintillation of radio waves traversing the ionosphere. One- or two-dimensional phase
screens admit analytic representations of the intensity spectral density function (SDF) in terms of combina-
tions of the phase structure function. Early results have been attributed to Gochelashvily and Shishov
[1971]. The earliest development of the statistical scintillation theory assumed a Gaussian spectral density
function. This theory depended on only three parameters, namely, the RMS phase, < δϕ2>, a correlation
scale, σ, and the Fresnel scale, ρF. Various computational methods (generally approximate) were used with
results presented as contours of constant S4 plotted against the dimensionless (ρF/σ)

2 and < δϕ2>. The dia-
grams show strong focusing regions where S4 exceeds unity [Singleton, 1970].

The application of Kolmogorov’s theory to atmospheric turbulence was well known at the time scintillation
theory was evolving, and it was generally accepted that a power law SDF was a better candidate for iono-
spheric structure than the more mathematically tractable Gaussian SDF. The first power law computations
have been attributed to Rufenach [1974]. In these calculations an outer scale wave number was introduced,
which played a role similar to σ, but the additional spectral index parameter provided a much broader range
of scintillation structure possibilities.

At that time ionospheric researchers assumed that every SDF had a well-defined autocorrelation function
that provided an alternative characterization of the structure. However, in the theory of turbulence trend-like
departures from strict statistical homogeneity are part of the process. Measurements of turbulent structure
are based on models with stationary increments characterized by structure functions. Rumsey [1975] was
the first to show that robust solutions to the parabolic wave equation can exist even when the structure does
not admit an autocorrelation function or even a structure function. He developed a theory of scintillation
using an unmodified (unbounded) power law SDF obtained in the limit of an infinitely large outer scale, not-
ing that the solution is “basic to an understanding of propagation in a random medium in the same sense
that the plane wave solution is basic to an understanding of wave propagation. Both are idealizations that
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do not actually occur… Despite this they are basic, because they are simple and exact.” Uscinski et al. [1981]
contrasted the unmodified and modified (with an outer scale) power law models and offered the criticism
that the former is physically meaningful only when the observer is so close to the screen that the outer scale
cannot be “felt.” Later investigations continued to explore the strong scatter behavior associated with propa-
gation through irregularities characterized by a universal Kolmogorov (unmodified) power law [Gozani, 1985].

Rino [1979b] noted that an unconstrained inverse power law implies fractal scaling and introduced a normaliza-
tion which allows the theory of scintillation (at all levels of scattering consistent with the parabolic wave equa-
tion) to be completely specified in terms of three parameters, the Fresnel scale, the spectral index, and a
universal strength parameter. In effect, a universal scalingwas achieved such that different combinations of per-
turbation strength, propagation distance, and frequency produce the same results. In a series of subsequent
papers [Rino, 1979b, 1980, 1982; Rino and Owen, 1984] he and his colleagues explored the numerical and
asymptotic ramifications of this statistical theory of scintillation. Concurrently, Booker and MajidiAhi [1981] were
also exploring power law phase screen solutions to the problem of strong scintillations, but these authors
included both outer and inner scales in their calculations. The ramifications of the Booker andMajidiAhi calcula-
tions and analysis were discussed in detail by Rino and Owen [1984]. Forte [2008, 2012] later employed the the-
ory of Booker and MajidiAhi in a qualitative manner to interpret multifrequency scintillations at auroral [Forte,
2008] and equatorial [Forte, 2012] latitudes. More recently, Carrano et al. [2012] applied the strong scatter theory
in the context of an inverse technique to quantitatively infer ionospheric phase screen parameters from mea-
sured scintillation time series. In his book, Rino [2011] reviewed the parabolic moment equations and discussed
the strong scatter behavior of inverse power law phase screen models. In a pair of recent papers, Zernov and
Gherm [2015] and Gherm and Zernov [2015] extended the parabolic moment equations to describe strong scin-
tillations of the wavefield propagating within an inhomogeneous random medium.

Several decades of subsequent scintillation measurements from in situ rocket and satellite beacons have
revealed that ionospheric structure exhibits a wide range of inverse power law SDF characteristics. Shishov
[1974, 1976] developed asymptotic solutions for the case of a two-component (piecewise power law) irregular-
ity spectrum for isotropic three-dimensional irregularities. Basu et al. [1983] noted that scintillation at L bandwas
present at Ascension Island only when the intensity decorrelation time at UHF was short. Their reporting of a
two-component in situ spectrum (with a spectral break in the inertial range) spawned several studies to recon-
cile multifrequency scintillation observations. Franke and Liu [1983, 1985] advocated the importance of a two-
component model in reconciling scintillation observations conducted at multiple frequencies. They also advo-
cated using the intensity correlation length as an important diagnostic in strong scintillation and noted its
potential utility in diagnosing the strength of scatter once S4 has saturated (and thus ceases to vary with further
increases in perturbation strength). Engavale and Bhattacharyya [2005] simulated the fourth moment of inten-
sity variations numerically for one- and two-component irregularity spectra to investigate the behavior of S4 and
intensity correlation length in the weak and strong scatter regimes. Forte [2012] noted the limitations of a one-
component spectral model in reconciling scintillations of the Global Positioning System (GPS) satellite signals.
To the best of our knowledge, previous modeling efforts involving two-component power law spectra have
either been limited to asymptotic results only [Shishov, 1974, 1976] or restricted to the particular model
p1 = 2, p2 = 4 [Franke and Liu, 1983, 1985; Engavale and Bhattacharyya, 2005] (for which the structure function
takes on a simple form). Two recent papers [Rino et al., 2014, 2016] present observations of inverse power
law in situ spectra observed with the Planar Langmuir Probe (PLP) on board the Communications/Navigation
Outage Forecasting System satellite. The companion study by Rino et al. [2016] motivates the need for the pre-
sent study in the sense that two-component power law spectra are demonstrated to be statistically prominent
for highly structured disturbances in premidnight equatorial ionosphere. It also relates the observed in situ
spectral characteristics to scintillations observed via ground-based reception of beacon satellite signals.

Rino and Carrano [2013] generalized the statistical theory of scintillation to include a two-component struc-
ture model. The generalized theory is completely specified by four parameters: the Fresnel scale, the two
spectral indices, and the wave number of the spectral break. The current paper further develops this theory
and uses numerical methods to solve the fourth moment equation that is valid for any strength of scatter
within the parabolic (paraxial approximation). A forthcoming sequel to this paper employs asymptotic tech-
niques to develop new theoretical predictions for the behavior of the scintillation index and intensity correla-
tion length under asymptotically strong scatter. Recovering the exact solution to the analytic limiting forms
validates the numerical calculations. We use the numerical results within the context of a spectral fitting
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technique to retrieve the model parameters, including scattering strength, low- and high-frequency spectral
indices, and the break wave number from intensity scintillation measurements. Since a spectral break can be
used to attenuate certain scale sizes in the structure, we use the two-component structure model as a frame-
work for examining the relative contributions to the intensity field due to large- and small-scale ionospheric
structures. These contributions are difficult to quantify directly due to the highly nonlinear response of the
system. In this sense, investigation of the two-component model yields important insight into the general
behavior of wave propagation in a random medium (irrespective of whether a well-defined spectral break
at intermediate spatial scales is present). Finally, we generalize the commentary of Uscinski et al. [1981] by
providing the conditions under which a general spectral break (representing an outer scale, inner scale, or
intermediate scale) may be expected to influence the scintillation statistics.

2. The Statistical Theory of Scintillation

We begin by assuming that the effects of the disturbed ionosphere with statistically homogeneous refractive
index fluctuations can be adequately represented by a thin phase-changing screen. We further assume that
the fluctuations are formally two-dimensional, which is a suitable approximation for highly elongated field-
aligned structure that results from the high mobility of electrons along magnetic field lines. The statistics
of phase variations in the screen are characterized by the phase spectral density function Φδϕ(q). The phase
structure function is defined as

Dδϕ rð Þ ¼ ∫
∞

�∞2 1� cos qrð Þ½ �Φδϕ qð Þ dq
2π

(1)

where r is the spatial separation and q is the corresponding spatial wave number. Under the paraxial approx-
imation, the equation governing the fourth moment of intensity fluctuations assumes a parabolic form
[Ishimaru, 1997; Yeh and Liu, 1982]. For the case of a normally incident plane wave, the solution for the inten-
sity spectral density function (SDF) following traversal of the screen can be expressed as

ΦI qð Þ ¼ ∫
∞

�∞exp �g r; qρ2F
� �� �

exp �iqrð Þdr (2)

where ρF ¼
ffiffiffiffiffiffiffi
z=k

p
is the Fresnel scale, z is the propagation distance from the screen, and k is the free-space

wave number of the radio wave [Gochelashvily and Shishov, 1971; Rino, 1979b]. The structure interaction func-
tion that appears in (2) is given by the following combination of structure functions:

g r1; r2ð Þ ¼ Dδϕ r1ð Þ þ Dδφ r2ð Þ � 1
2
Dδϕ r1 þ r2ð Þ � 1

2
Dδϕ r1 � r2ð Þ (3)

Using the half-angle angle identity, the structure interaction function can be written equivalently as [Rino,
1979b] equation (4):

g r1; r2ð Þ ¼ 8 ∫
∞

�∞Φδϕ qð Þsin2 r1q=2ð Þsin2 r2q=2ð Þ dq
2π

(4)

The scintillation index, S4, is obtained by integrating the intensity SDF over all wave numbers:

S24 ¼
1
2π

∫
∞

�∞ΦI qð Þdq� 1 (5)

The unity term in (5) effectively removes the mean wave intensity, which is conserved in the calculation and
set equal to unity. The intensity correlation function is the inverse Fourier (cosine) transform of the intensity
spectrum:

RI rð Þ ¼ ∫
∞

�∞ΦI qð Þcos qrð Þdq
2π

(6)

which is commonly presented in normalized form as

ρ rð Þ ¼ RI rð Þ � 1½ �=S24 (7)

The correlation length rc is defined as the spatial separation for which the intensity correlation decreases to
50%, i.e., ρ(rc) = 1/2.
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2.1. The Two-Component Structure Model

Rino and Carrano [2013] proposed the following two-component model for the phase SDF corresponding to
a 2-D irregularity model:

Φδφ qð Þ ¼ C ′
p

qj j�p1 ; q ≤ q0

q p2�p1
0 qj j�p2 ; q > q0:

(
(8)

The parameter C ′ p is the strength of the phase SDF evaluated at 1 rad/m, and the prime is used to distinguish this
from the phase spectral strength for the 3-D irregularity model described by Rino [1979a, 1979b]. Model (8) has a
spectral break at the wave number q0. The break wave number appears in the lower branch to force continuity of
the spectrum at q0. With this form p1 =p2 gives an unmodified power law, in which case we represent the phase
spectral index with just p. The choice p1 =0 gives an outer scale, while the choice p2≫3 emulates an inner scale. It
can be shown that the structure interaction function consistent with the two-component structure model is well
defined provided that p1< 5 and p2> 1. Henceforth, we assume that the spectral indices satisfy these conditions
(to avoid restating these conditions each time a new result is given). Moreover, we consider only cases of practical
interest with p1≤ p2. Note that we colloquially refer to the spectral indices p1 and p2 as “slopes”when in fact they
represent negative slopes in an inverse power law environment. Unless otherwise stated, we also generally
assume that the Fresnel scale lies between the outer and inner scales, when the later are present. While we con-
sider a strictly two-dimensional ionosphere in this paper, the appendix of the companion study [Rino et al., 2016]
demonstrates how this model may be related to the three-dimensional irregularity model described in Rino
[1979a, 1979b]. In this case, the wave number q is reinterpreted as the square root of a quadratic form that
depends on the magnetic field direction.

2.2. Self-Similar Form and Universal Scaling

The Fresnel scale arises naturally in diffraction calculations, even in a power law environment which lacks a
dominant scale. We use the Fresnel scale to define a normalized spatial separation variable η= r/ρF and a nor-
malized wave number μ= qρF. This approach differs from that taken by previous authors who normalize by the
outer scale [Uscinski et al., 1981; Bhattacharyya et al., 1992]. Since the presence of an outer scale may or may not
have a significant influence on the intensity field, depending on the spectral shape and strength of scatter (we
will show it has little influence when p1≤ p2< 3), we argue the outer scale is not ideal for normalization.

In terms of the normalized variables, the phase SDF can be written as

P μð Þ ¼
U1 μj j�p1 ; μ ≤ μ0

U2 μj j�p2 ; μ > μ0:

(
(9)

where the scattering strength parameters are given by

U1 ¼ C′p ρ
p1�1
F ; U2 ¼ C′p q

p2�p1
0 ρp2�1

F (10)

Note that (8) implies that the turbulent strength parameters are related as U2 ¼ U1μ
p2�p1
0 . Using (2), (4), and

(9) the intensity spectrum can be expressed in dimensionless form as

I μð Þ ¼ 2∫
∞

0 exp �γ η;μð Þf gcos ημð Þdη (11)

while the dimensionless structure interaction function becomes

γ η;μð Þ ¼ 16 ∫
μ0

0
U1χ�p1 sin2 χη=2ð Þsin2 χμ=2ð Þ dχ

2π
þ 16 ∫

∞

μ0

U2χ�p2 sin2 χη=2ð Þsin2 χμ=2ð Þ dχ
2π

(12)

In (12) the variable of integration χ = qρF is a normalized wave number (like μ), and the integration is parti-
tioned at the spectral break which occurs at the dimensionless wave number μ0 = q0ρF.

The normalized phase and intensity spectra are related to their dimensioned counterparts as

P μð Þ ¼ Φδϕ μ=ρFð Þ=ρF
I μð Þ ¼ ΦI μ=ρFð Þ=ρF (13)

Once the intensity spectrum (11) has been evaluated, the dimensional form of the spectrum can be recovered
using (13). The scintillation index may be evaluated in terms of the normalized intensity spectrum as follows:
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S24 ¼
1
2π

∫
∞

�∞I μð Þdμ� 1 (14)

Similarly, the intensity correlation function may be expressed in terms of a normalized spatial separation dis-
tance ξ = r/ρF as

RI ξð Þ ¼ ∫
∞

�∞I μð Þcos μξð Þdμ
2π

ρ ξð Þ ¼ RI rð Þ � 1½ �=S24
(15)

We define the universal scattering strength, U, as the normalized phase spectral power at the Fresnel scale,

U ¼ U1; μ0 ≥ 1
U2; μ0 < 1

�
(16)

In other words, U≡ P(μ= 1). For an unmodified power law we have U=U1 =U2, so that the two-component
model reduces to the unmodified power law model discussed by Rino and Owen [1984]. When U≪ 1 the scat-
ter is weak and when U≫ 1 the scatter is strong. The four parameters p1, p2, μ0, and U specify all solutions for
two-component spectra, in that different combinations of perturbation strength, propagation distance, and
frequency produce the same results.

In a single power law environment the universal strength parameter U ¼ C′p ρ
p�1
F admits the following inter-

pretation. If a realization of a scale-free power law process is scaled by αp� 1, the scaled realization is statis-
tically indistinguishable from the original realization. Since ρF controls the statistical structure, the diffraction
theory must admit the same self-similar (fractal-like) scaling.

3. Summary of Asymptotic Results

Equations (11), (12), and (16) characterize the intensity SDF in normalized units as a function of a single universal
strength parameter, U. From the intensity SDF, the scintillation index and the intensity correlation function fol-
low. Thus, within practical constraints imposed by computation time, the complete parameter space can be
explored. However, it is important to have checks and guidelines afforded by asymptotic limits. The complete
catalog of results is extensive. Thus, we have chosen to present those details in a forthcoming sequel to this
paper. Only the most important asymptotic results are summarized here. The purpose of presenting this
summary here is twofold. First, the asymptotic formulas are used to validate the numerical results. Second,
the asymptotic results organize the behavior of the intensity SDF in terms of different classes of irregularity
spectra and guide the interpretation of the numerical experiments conducted in this paper.

3.1. Weak Scatter

When the scatter is weak (U≪ 1), the exponential in (11) may be expanded in a Maclaurin series to first order
and (12) may be used to obtain the well-known result [Yeh and Liu, 1982]:

I μð Þ ¼ 2πδ μð Þ þ 4sin2 μ2=2
� �� �

P μð Þ (17)

The interpretation is that in weak scatter the intensity SDF is a Fresnel-filtered version of the structure (phase)
SDF, where the so-called Fresnel filter function appears in brackets. The filter function acts to suppress the
contribution from large-scale structure. The approximation (17) is also generally applicable (for any strength
of scatter) at sufficiently small and large wave numbers, except that the Fresnel oscillations are suppressed in
strong scatter [Gochelashvily and Shishov, 1971]. The behavior at low wave numbers follows by expanding the
Fresnel filter function in a Maclaurin series to the lowest order:

I μð Þe μj j4P μð Þ (18)

The behavior at large wave numbers follows by noting that the Fresnel filter function oscillates about a value 2

I μð Þe2P μð Þ (19)

For the two-component power law model, (18) and (19) indicate a return to power law behavior at asympto-
tically small and large wave numbers. The range of intermediate wave numbers over which deviations from
power law behavior may occur and neither approximation (18) nor (19) is applicable increases with increasing
strength of scatter U.
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In the weak scatter approximation, the behavior of the scintillation index S4 may be inferred by substituting (17)
into (11). The complete result will be given in a forthcoming sequel to this paper, but the dependence on scattering

strength is such that S24∝U. Under the same weak scatter approximation, the normalized intensity correlation func-
tion ρ(ξ) is independent of the strength of scatterU. This can be seen by substituting (17) into (5) and (6) to find that
R(ξ) ∝ U and S24 ∝ U, respectively, such that the scattering strength cancels out in the defining relation (7). The nor-
malized intensity correlation length ξc is therefore also independent of scattering strength and in fact is an order
one quantity that depends only on p1, p2, andμ0. As such, the dimensioned intensity correlation length rc varies like
the Fresnel scale in weak scatter. In particular, rc increases with propagation distance past the phase screen.

3.2. Strong Scatter

Under moderate scatter conditions (U~1) the increase in the scintillation index with increasing strength of
scatter is not as easily summarized. As the scattering strength increases the scintillation index will ultimately
saturate at a limiting value that may exceed unity. The transition to saturation can proceed either without
exceeding unity or by reaching a strong focusing maximum. Once the scintillation index begins to saturate,
the normalized correlation length begins to decrease with increasing strength of strength. Here we summar-
ize the behavior of the scintillation index and correlation length for the case of asymptotically large U. The
limiting behavior can be shown to depend critically on the spectral index p1 of the two-component model
at low wave numbers. All of the asymptotic results presented in this section are new.

When p1< 3 (which includes the case when an outer scale is present), the limiting value of the scintillation
index is unity. The approach to this limit may be monotonic, or a local maximum may be achieved with
S4> 1 due to strong focusing. In the latter case, the scintillation index will recede from its maximum value
with increasing strength of scatter, ultimately converging to unity from above. This behavior has been dis-
cussed extensively by previous authors [e.g., Salpeter, 1967; Singleton, 1970; Gochelashvily and Shishov, 1971].

When 3< p1< 5, the limiting value is

S4→

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p1 � 1
5� p1

s
(20)

which exceeds unity. This so-called quasi-saturation state, whereby S4 approaches a value exceeding unity in the
strong scatter limit, occurs only when p1> 3. In this case the value of p2 is immaterial in the sense that the large-
scale phase structure (μ<μ0) dominates the development via strong focusing. Rino [1979b] and Rino and Owen
[1984] derived a result for the case of an unmodified power law spectrumwhich is less than the limiting value (20)
because the contribution from low frequencies was neglected in their analysis. In fact, the low-frequency contri-
bution becomes increasingly significant as p1 exceeds 3 due to strong focusing effects. It should be noted, how-
ever, that the irregularities must be homogenous for the statistical theory to be valid (i.e., the structure must
admit Fourier decomposition). If the irregularities are inhomogeneous at the largest scales, then departures from
the strong scatter theory may be expected if these large-scale structures play a significant role in the scattering.

As mentioned earlier, the normalized intensity correlation length ξc is independent of scattering strength in
weak scatter (U≪ 1). The normalized correlation length begins to develop a dependence on scattering strength
in the transition region (U~1). In the strong scatter limit (U→∞) this dependence takes the form of an inverse
power law, ξc∝U

�nc , where the exponent nc depends on p1 and p2 from the two-component model. An excep-
tion is the special case p1 = p2 = 3 which will be discussed later. To simplify the notation below, let β1 = 1 if μ0≥ 1
and β1 =μ

p1�p2
0 if μ0< 1 so that U1 = β1 U. Similarly, let β2 =μ

p2�p1
0 if μ0≥ 1 and β2 = 1 if μ0< 1 so that U2 = β2 U.

3.2.1. Shallow Spectra
When p1 ≤ p2< 3, the limiting correlation length takes the following form:

ξc→
log 2ð Þ
Uβ2

ffiffiffi
π

p
p2 � 1ð ÞΓ p2

2½ �
22�p2Γ 3�p2

2½ �
� 	
 �1= p2�1ð Þ

(21)

Thus, nc = 1/(p2� 1) which tends to 1/2 as p2 approaches 3. If p1 = p2, we recover the result for an unmodified
power spectrum. It is clear from (21) that the limiting correlation length is dictated by the high-frequency por-
tion of the phase spectrum (μ>μ0) when it is shallow, as might be expected. In fact, if μ0< 1, the limiting
correlation length is the same as for an unmodified power law with p= p2.
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3.2.2. Steep Spectra
If p2≥ p1> 3, the limiting normalized correlation length can be shown to satisfy the following integral equation:

∫
∞

�∞ μj j� p1�3ð Þ=2exp � μj j5�p1

4AU

" #
exp �iμξcð Þdμ ¼ 2

ffiffiffiffiffiffiffiffiffi
AUπ

p
(22)

where

A ¼ β1
22�p1 p1 � 2ð ÞΓ 5�p1

2½ �ffiffiffi
π

p
p1 � 3ð ÞΓ p1

2½ � (23)

In general, (22) must be solved numerically to determine the limiting correlation length. Having done so, we
present the following empirical fit which provides a useful approximation when 3< p1 ≤ 4:

ξc→
0:32þ 1:4 p1 � 3ð Þ þ exp �6:2þ 7:2 p1 � 3ð Þ½ �

β1Uð Þ1= 5�p1ð Þ (24)

When p1> 4, a better approximation may be obtained by replacing the leftmost exponential in (22) with
unity. Performing the integration and solving for ξc give

ξc→
1

β1U
Γ 5� p1

2

h i
Γ p1

2

h i 2p1�1 p1 � 3ð Þ 1þ sin p1π=2ð Þ½ �
p1 � 2ð Þ


 � 1
5�p1

(25)

In summary, when p1> 3, the correlation length is an inverse power law function of the scattering strength
with exponent nc = 1/(5� p1), which tends to 1/2 as p1 approaches 3. The limiting correlation length on scat-
tering strength is dictated by the low-frequency portion of the phase spectrum (μ<μ0) when it is steep.
3.2.3. Mixed-Slope Spectra
When p1< 3, p2> 3, the limiting correlation length is

ξc→
log 2ð Þ

Uβ1μ
3�p1
0

π p2 � 3ð Þ 3� p1ð Þ
p2 � p1ð Þ

" #1=2

(26)

In this case the limiting correlation length is an inverse power law function of the scattering strength U with
exponent nc = 1/2, irrespective of the values of p1 and p2. This dependence is due to the leading term in the
Maclaurin series expansion of the structure function, which depends quadratically on the spatial separation
under these conditions. Interestingly, the rate at which ξc decreases with increasing scattering strength is slower
for mixed-slope spectra than that for an unmodified power law with any slope (except for the special case
p1 = p2 = 3, which is discussed next). This is true whether the break acts as an outer scale, and intermediate spec-
tral break, or an inner scale. Mixed-slope spectra are thus more inherently “balanced” than shallow or steep
spectra, in the sense that they lack an overabundance of large-scale structure (which causes strong focusing)
and small-scale structure (which scatters waves more effectively and tends to mitigate these focusing effects).

For an unmodified power law with p1 = p2 = 3 the limiting correlation length departs from a strictly inverse
power law dependence on scattering strength and instead behaves as

ξc→
2

Ulog Uð Þ

 �1=2

(27)

This rate of decreasewith increasing scattering strength is the slowest for any one- or two-component inverse power
law. In a sense, this case represents the point of balancewhere neither the large- nor small-scale structure dominates
the development in the strong scatter regime. For steeper spectra the intensity field becomes dominated by the
large-scale structure, while for shallower spectra it becomes dominated by the small-scale structure provided the
scatter is sufficiently strong. This interpretation also holds for general two-component spectra, but in this case the
development depends on the two slopes and the location of the spectral break relative to the Fresnel scale.

4. Numerical Results and Discussion

We begin this section by briefly describing the numerical techniques used to compute the intensity SDF. This
is followed by a discussion of our numerical experiments. Since the integral defining the intensity SDF (11) is
oscillatory over the unbounded domain (0,∞), specialized quadrature methods are recommended for its
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numerical evaluation. Having experimented with many techniques, we found the most efficient to be the
double exponential quadrature scheme for Fourier-type integrals developed by Ooura and Mori [1991].
This scheme employs a specialized transformation that ensures the transformed integrand decreases rapidly
(doubly exponentially) while at the same time clustering quadrature nodes near the zeroes of the cosine
function. As a result, a truncated quadrature sum will achieve rapid convergence with increasing number
of terms for Fourier-type integrals with slowly (algebraically) decaying integrands. This algorithm employs
an adaptive grid for the quadrature, using as many nodes as required to achieve the desired accuracy. This
has an advantage over numerical techniques that solve the fourth moment equation on a fixed grid (e.g.,
the method of finite differences [Gozani, 1985] or the split-step method [Bhattacharyya and Yeh, 1988]).
The reason is that the range of η values over which the integrandmust be evaluated to achieve a prespecified
accuracy depends critically on the scattering strength. Fixed grid techniques can produce incorrect or mis-
leading results when using an unmodified power law structure model; the fixed grid implicitly imposes inner
and outer scales on the structure which can significantly alter the development of the scintillation.

While it is possible to evaluate the structure interaction function (12) via numerical quadrature, this becomes
increasingly difficult when η/μ≪ 1 or η/μ≫ 1 because the integrand contains oscillations with two highly sepa-
rated frequencies. As it happens, this condition is met for larger number of quadrature nodes as the strength of
scatter increases. We avoided this problem by calculating the structure interaction function using an analytic
formula derived in a forthcoming sequel to this paper. When η/μ≪ 1 or η/μ≫ 1, however, direct evaluation of
this formula results in catastrophic loss of precision due to the subtraction of nearly equal terms. We avoided
this by expanding the structure interaction function in a Maclaurin series (summing additional terms until con-
vergence is reached). Because of the potentially large dynamic range of the intensity SDF when the scatter is
strong, all calculations were performed using the Mpmath Python library for arbitrary-precision floating-point
arithmetic [Johansson et al., 2013]. It was determined by numerical experimentation that retaining 64 digits
for these calculations produced highly accurate results. It was not always possible, for example, to demonstrate
the high-frequency return to power law behavior in very strong scatter conditions using IEEE double precision
with 16 digits. The Python software used to produce all the numerical results in this paper is available from the
authors upon request. Next, we describe results of our numerical experiments.

4.1. Morphology of the Intensity Spectrum

In this section we investigate the shape of the intensity spectrum as a function of frequency and scattering strength.
We compare the cases of an unmodifiedpower law, amodifiedpower lawwith an outer scale, and amodifiedpower
lawwith an inner scale. At this point it is useful to introduce the notion of a “dominant” spectral index. We define the
dominant spectral index p for a two-component spectrum to be the (negative) slope of the phase spectrum at the
Fresnel frequency (μ=1); in otherwords p=p1 ifμ0≥ 1 and p=p2 ifμ0< 1. This notion ismost useful when the spec-
tral break is well separated from the Fresnel frequency (i.e., μ0≪1 or μ0≫1). In the discussion that follows we will
impose outer and inner scales on an initially unmodified power law of index p. Even though the introduction of
an outer or inner scale formally creates a two-component spectrum, at times we may continue to refer to the index
p only (rather than explicitly mentioning both p1 and p2). It should be understood in these cases that the dominant
spectral index is intended. We begin by considering the case of an unmodified power law with p1=p2=p.

Figure 1 shows the behavior of the intensity spectrum in the receiver plane following propagation through the
phase screen. The irregularities are characterized by an unmodified inverse power law with half-integer values of
the phase spectral index ranging from p=1.5 to p=4.5. Results corresponding to four values of the universal scat-
tering strength are shown in each panel, ranging from U=1 to U=1000. Note that the axes for the cases p=1.5
and p≥ 4 are significantly different from the others; this was necessary to capture the dynamic range of interest
(in particular, the return to power law behavior at asymptotically small and large wave numbers). For all values of
scattering strength the intensity spectrum returns asymptotically to power law behavior at low and high wave
numbers with I(μ) ~U|μ|4� p and I(μ) ~ 2U|μ|� p, respectively. These asymptotes are shown as gray dashed lines
in Figure 1. Between these power law regions lies a more gently sloped “plateau” region that includes the Fresnel
wave number μ=1. Note that the large-scale intensity structure is partially suppressed by the action of Fresnel
filtering. However, the efficacy of this large-scale suppression is decreased as the phase spectral index increases
(since the filter acts a power law multiplier in the frequency domain with a fixed exponent, i.e., |μ|4).

When U≪ 1, the intensity spectrum (not shown) exhibits Fresnel oscillations as suggested by the weak scatter
result (17). As U increases these Fresnel oscillations are gradually suppressed, and for some critical values of
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scattering strength U≈ 1 the spectrum resembles a smooth concatenation at the Fresnel wave number μ=1 of
the small and high wave number inverse power law asymptotes. The critical value of U at which this occurs
decreases for increasing p. These strong scatter effects are first manifested at lower values of U for more steeply
sloped spectra. AsU increases further the intensity spectrumwidens, extending to both smaller and larger wave
numbers, while the power in the plateau region surrounding the Fresnel wave number decreases accordingly to
maintain saturation (or quasi-saturation) conditions (specifically, S4 approaches unity when p< 3 and S4
approaches the result (20) when 3< p< 5). Thus, there is necessarily a significant departure from power law
behavior at intermediate wave numbers when U≫ 1. Rumsey [1975] analyzed the 3-D isotropic case rather than
the 2-D case that we consider, but he also noted that for any given scattering strength the intensity spectrum
widens without bound as p approaches either end of its permissible range (in our case the values 1 and 5). From
the form of (11) it is evident that as the strength of scatter increases the contribution to the intensity spectrum at
large μ originates predominantly from small values of η and vice versa. This effect is stronger for more steeply
sloped spectra. This fact, together with (12), implies that as the intensity spectrum widens so does the range of
spatial scales in the ionospheric structure that contributes appreciably to the integral (11). For a given value ofU,
the least spectral widening (at both low and high wave numbers) occurs for the case p=3, which (as we shall
see) also corresponds to the case of the longest intensity correlation length for any 1< p< 5.

For the cases with p> 2 the approach to the low wave number asymptote takes the form of a low-frequency
enhancement, while the approach to the high wave number asymptote may involve significant overshoot
referred to as high-frequency spectral broadening [Booker and MajidiAhi, 1981; Forte, 2008, 2012; Carrano

Figure 1. Spectra of intensity variations in the receiver plane following propagation through irregularities characterized by
an unmodified power law. The different panels show results for values of the phase spectral index ranging from p = 1.5 to
p = 4.5. The different colored curves correspond to the scattering strength values U = 1, 10, 100, and 1000.
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et al., 2012]. Progressively steeper spectra with p> 2 exhibit more high-frequency broadening. Both effects are
associatedwith strong focusing conditionswhich produce S4 values that exceed unity. In all of our simulations, a
clear return to power law behavior is observed at high frequencies. This return to power law behavior at high
frequencies is quite gradual for shallow spectra (p< 3) and abrupt for steep spectra (p> 3). While this return
to power law is quite prominent for steep spectra, it occurs where the intensity SDF is small and therefore
may go unnoticed in many experiments. We also observed a clear return to power law behavior at low frequen-
cies when p≥ 2. When p< 2, there was a tendency to approach the theoretically predicted asymptotic slope (if
not the scale factor). This anomaly appears to be a consequence of the fact that as the phase spectral index
approaches the singular value p=1 from above, an increasingly broad range of structure scales contributes
to the intensity spectrum at small wave numbers. In this case, higher-order terms than those retained in the
derivation of (18) are required to establish the correct asymptotic result. We note that the intensity spectra pre-
sented by Booker and MajidiAhi [1981] do not exhibit a clear return to power law behavior at large wave num-
bers because the SDF they used to describe the structure included an inner scale with exponential falloff.

Figure 2 shows the behavior of the intensity spectrum in the receiver plane following propagation through the
phase screen when the irregularities are modeled by a modified inverse power law with an outer scale (much lar-
ger than the Fresnel scale). The outer scale is imposedwith p1=0 and at the break wave number μ0=0.1. The var-
ious panels in the figure correspond to half-integer values of the high-frequency slope p2 ranging from p2=1.5 to
p2=4.5 (i.e., the dominant spectral index p=p2 is varied). The vertical dotted line indicates the break wave

Figure 2. Spectra of intensity variations in the receiver plane following propagation through irregularities characterized by
a modified power law with an outer scale (p1 = 0) imposed at the wave number μ0 = 0.1. The different panels show results
for values of the high-frequency phase spectral index ranging from p2 = 1.5 to p2 = 4.5. The different colored curves cor-
respond to the scattering strength values U = 1, 10, 100, and 1000.
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number. When a spectral break is present, the intensity spectrum for asymptotically small and large μ behaves like

I μð Þeμ4�p1 and I μð Þe2μ�p2 , respectively. These asymptotes are shown as gray dashed lines in Figure 2.

Note that when the scatter is weak, the spectral break is easily discernible as a discontinuity in the slope of the
intensity spectrum. This discontinuity is present in weak scatter because each harmonic in the intensity varia-
tions is proportional to the corresponding harmonic in the phase screen according to (17). When the scatter
is strong, the presence of a spectral break is no longer directly apparent in the intensity spectrum. This occurs
because when the scatter is strong, the contribution to each harmonic in the intensity spectrum comes from
many harmonics in the screen through the nonlinearity implied by (11) [see also Hewish, 1989]. Similarly, the
contribution from harmonics in the screen near the spectral break is distributed tomany harmonics in the inten-
sity field, effectively smoothing out the discontinuity. We also note that for large U≫ 1 the return to power law
behavior at lowwave numbers is consistent with the slope, but not the scale factor, of the theoretical result (18).

A comparison of Figures 1 and 2 reveals the effect of an imposed outer scale (much larger than the Fresnel scale)
on the development of the intensity fluctuations in the receiver plane. The shallow spectra cases with p< 3 are
affected by the presence of the outer scale only in the vicinity of the break wave number μ0 =0.1 and smaller
wave numbers (compare Figures 2a–2c with their counterparts in Figure 1). The effects of the outer scale are rela-
tively subtle for these shallow spectra; the low-frequency enhancement is partially suppressed, and the return to
power law behavior at low wave numbers is achieved with a steeper (positive) slope. Conversely, the steeply
sloped spectra cases with p> 3 exhibit dramatically less spectral dynamic range at both low and highwave num-
bers when the outer scale is present (compare Figures 2e–2g with their counterparts in Figure 1). The reason for
this differing response to the presence of an outer scale for shallow and steep spectra has to dowith the presence
and efficacy of large-scale focusing. When the scatter is strong, large-scale features in the ionospheric structure
tend to focus the radio waves, resulting in the generation of intensity variations with scales both large and small
[Mercier, 1962; Booker and MajidiAhi, 1981; Hewish, 1989]. The imposition of an outer scale has a greater effect in
the case of a steeply sloped spectrumprimarily because it results in the erosion of comparativelymore large-scale
structure than in the case of a shallow spectrum.

Figure 3 shows the behavior of the intensity spectrum in the receiver plane following propagation through the phase
screen when the irregularities are modeled by a modified inverse power law with an inner scale (much smaller than
the Fresnel scale). The inner scale is emulated with p2=4.5 imposed at the break wave number μ0=10. The various
panels correspond to half-integer values of the low-frequency index p1 ranging from p1=1.5 to p1=4.5 (i.e., the
dominant spectral index p=p1 is varied). The vertical dotted line indicates the break wave number, and the gray
dashed lines delineate the high- and low-frequency asymptotes. The case p1=4.5 actually has no spectral break since
p1=p2. As in the case of an outer scale, the presence of the current spectral break (representing an inner scale) is only
directly evident as a discontinuity in the slope of the intensity spectrumwhen the scatter is weak. When the scatter is
strong, nonlinear interactions result in a smoothed intensity spectrum. In the strong scatter case the introduction of
an inner scale has a dramatic effect on the shallow sloped casesp< 3 (compare Figures 3a–3cwith their counterparts
in Figure 1). The inner scale limits the dynamic range of I(μ) for the shallow spectrum cases considerably, and the
small-scale enhancement is larger than that for the unmodified power law case. The inner scale has almost no effect
on the steeply sloped cases p> 3 (compare Figures 3e–3g with their counterparts in Figure 1). The reason for this
differing response for shallow and steeply sloped spectra has once again to do with the presence and efficacy of
large-scale focusing. Focusing by the large-scale features transpires under strong scatter conditions regardless of
the spectral slope. However, shallower spectra imply the increased presence of small-scale structure which tends
to scatter the radio waves more effectively (in a wider range of directions), thereby reducing the net efficacy of
large-scale focusing [Alimov and Rakhlin, 1996; Vats et al., 1981; Bhattacharyya et al., 2003].

4.2. Irregularity Parameter Estimation

One of the principal uses of the two-component model is to aid with the interpretation of scintillation data
obtained from an experiment. The goal is to relate measurable characteristics of the measured signal fluctua-
tions to the statistical characteristics of the randommedium responsible for producing the scintillations. One
approach for accomplishing this is to use nonlinear least squares techniques to fit the intensity SDF of the
measurements with that obtained from (11); if the effective scan velocity [Rino, 1979a] is known, this
approach provides the four phase screen parameters p1, p2, μ0, and U. We refer to this as irregularity
parameter estimation (IPE), since the parameters defining a statistical description of the irregularities are
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retrieved from the scintillation observations. A similar approach was used by Carrano et al. [2012] in conjunc-
tion with a different scintillationmodel. Figure 4 shows an example whereby the SDFs of intensity scintillation
measurements at VHF (244MHz) and L band (1535MHz) have been fit with those obtained from (11) to infer
the model parameters p1, p2, μ0, and U. These measurements were acquired by Air Force Research Laboratory
on 22 March 2000 by monitoring VHF and L band geostationary satellite signals at Ascension Island (7.96°S,
14.41°W). The VHF and L band links were nearly colinear, with ionospheric penetration points separated in the
magnetic east-west direction by only 38 km, enabling a multifrequency analysis of scintillations along (nearly)
the same propagation geometry. The VHF data were acquired using antennas spaced in the magnetic east-
west direction, which enabled direct measurement of the zonal irregularity drift and calculation of the effec-
tive scan velocity. This velocity was used to map the measured scintillation time series to spatial series, and
the L band data were subsequently advanced by 38 km to approximately align it with the VHF data. The SDFs
were computed by applying Welch’s method to a 4min period of data using a sliding 2min window with 50%
overlap [Welch, 1967]. The least squares fits were performed over the wave number range shown in Figure 4 with
gray shading. We exclude from the fix the lowest frequencies which may be distorted by large-scale departures
from stationarity and also the highest frequencies which may be contaminated by receiver noise. The result of
the least squares spectral fitting of both the VHF and L band intensity SDFs using the same irregularity model
yielded estimates for the low- and high-wave number phase spectral indices p1 =2.2 and p2 =3.8 with a spectral
break at L0 =957m (which translates to the break wave numbers μ0 =1.7 at VHF and μ0 =0.7 at L band).

Figure 3. Spectra of intensity variations in the receiver plane following propagation through irregularities characterized by
a modified power law with an effective inner scale (p1 = 4.5) imposed at the wave number μ0 = 10. The different panels
show results for values of the low-frequency phase spectral index ranging from p1 = 1.5 to p1 = 4.5. The different colored
curves correspond to the scattering strength values U = 1, 10, 100, and 1000.
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The two-component irregularity model is necessary to reconcile these scintillation observations at VHF and L
band. We note that both VHF and L band scintillations are in the strong scatter regime (U> 1) with U=585.6 at
VHF and U=4.9 at L band. Also note that the S4 index is slightly larger at L band (S4 = 1.17) than it is at VHF
(S4 =0.92), which is a consequence of modest strong focusing effects on the higher-frequency signal. It should
be noted that the S4 value (0.92) computed from the VHF measurements is less than unity because the 4min
period used to compute this statistic is not sufficiently long to capture the largest-scale signal fluctuations.
Integrating the fitted model SDF (red curve in Figure 4a) over all wave numbers gives S4 = 1.01, indicating that
saturation conditions have indeed been attained. Previous authors have used the Booker and MajidiAhi [1981]
strong scatter calculations to interpret scintillations in either qualitative [Forte, 2008, 2012] or quantitative ways
[Vats et al., 1981]. In none of these studies were the irregularity parameters estimated by least squares fitting of
the data, possibly because the Booker and MajidiAhi [1981] results are available only for integer and half-integer
values of the phase spectral index. Our model allows for arbitrary fractional values of the spectral indices, which
makes it better suited for least squares fitting.

Figure 4. Spectral density functions for intensity scintillations observed at (a) VHF and (b) L band. The SDFs for the measure-
ments are shown in black, while the fitted model SDFs are shown in red. The gray shaded area indicates the wave number
range over which the fits were performed. The wave number of the inferred spectral break is shown with a blue dotted line.
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One is often tempted to estimate the spectral indices more simply by fitting the measured intensity SDF with a line
in log-log space. The question that arises when doing so is, in what frequency range should this linear fit be per-
formed?When the scatter is strong, this questionmay have no easy answer. Figures 1–3 demonstrate that the local
slope of the intensity SDF is equal to one of the (negative) spectral indices of the model (p1 or p2) only at extremal
wave numbers (i.e., following the return to power law behavior at asymptotically low and high wave numbers).
Since the intensity SDF has less power at extremal wave numbers, it is often the case that the return to power
law behavior occurs below the noise floor of the measurement system. When this occurs, departures from power
law behavior at measurable scales preclude obtaining reliable estimates of the spectral indices via the simple linear
fitting approach. For example, themeasured SDFs shown in Figure 4 exhibit no power lawwave number range over
which the spectral indicesmay be reliablymeasured by fitting a line in log-log space. The resolution to this problem
is to fit the SDF of measurable intensity variations with the model intensity SDF obtained from (11) over as wide a
wave number range as possible (while avoiding nonstationarity effects and receiver noise).

4.3. Contributions From Large- and Small-Scale Irregularity Structures

In this section we consider the ramifications of a spectral break in more detail. Our purpose is to investigate the
relative contributions to the scintillation from large- and small-scale ionospheric structures. This is difficult to quan-
tify except through simulation when the scatter is strong, due to the highly nonlinear response of the system.

Figure 5. Effect of an outer spectral break at wave number μ0 = 0.1 under strong scatter conditions with U = 1000. The indi-
vidual panels show the (a, d, and g) phase spectra, (b, e, and h) intensity spectra, and (c, f, and i) intensity correlation
functions for different values of the low-frequency spectral index p1 when the high-frequency spectral index is p2 = 2.5
(Figures 5a–5c), p2 = 3.0 (Figures 5d–5f), and p2 = 3.5 (Figures 5g–5i).
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Figure 5 shows the effect of an outer spectral break (μ0 = 0.1) under strong scatter conditions (U=1000). Three
high-frequency spectral indices are considered: one shallow (p2 = 2.5), one intermediate (p2 = 3.0), and one
steep (p2 = 3.5). Several values of the low-frequency index p1 are considered, ranging from the value of p2
(which yields an unmodified power law) down to zero (which imposes an outer scale). The effect of the outer
spectral break is to increasingly erode large-scale irregularity structure as p1 is decreased. Figures 5a, 5d, and
5g show the phase spectrum, Figures 5b, 5e, and 5h the intensity spectrum, and Figures 5c, 5f, and 5i the inten-
sity correlation function. For the spectral plots, the dashed lines show theoretical low- and high-frequency
asymptotes, the vertical dotted line indicates the break scale, and the horizontal dotted line indicates the value
of the phase spectral strength evaluated at the Fresnel scale, which is equal to the universal strength of scatter
U. The horizontal dotted line in the intensity correlation plots indicates 50% decorrelation, the abscissa at which
location is equal to the intensity correlation length ξc. Values of S4 and normalized correlation length ξc for the
different curves (corresponding to different values of p1) are labeled on the panels for convenience.

As is evident from Figures 5a–5i, eroding large-scale structure suppresses development of the low-frequency
enhancement for the shallow spectrum case (p2 =2.5). For the steeply sloped case (p2 =3.5), eroding large-scale
structure suppresses both low-frequency variations and also the prominent spectral broadening at high frequen-
cies. From this we infer that strong focusing by large-scale irregularity structure is responsible for both the low-
frequency enhancement and high-frequency spectral broadening. For the shallow spectrum case, the presence
or absence of a low-frequency enhancement does not alter S4 (Figure 5b) or the intensity correlation length
(Figure 5c). On the other hand, for the steeply sloped spectrum case, suppressing the low-frequency variations
and high-frequency spectral broadening drives S4 from its quasi-saturation value (20) down to unity (Figure 5
b), alters the shape of the correlation function (Figure 5i), and significantly increases the correlation length. For
the intermediate slope case (p2 =3.0), other than suppression of the low-frequency enhancement, the erosion
of large-scale structure has little effect. The S4 value remains close to unity (Figure 5e), and the correlation func-
tion exhibits a change only at large spatial separations (Figure 5f), leaving the correlation length unchanged.

Figure 6 shows the effect of an inner spectral break (μ0 = 10) under strong scatter conditions (U=1000). Three
low-frequency spectral slopes are considered: one shallow (p1 = 2.5), one intermediate (p1 = 3.0), and one steep
(p1 = 3.5). Several values of the high-frequency index p2 are considered, ranging from the value of p1 (which
yields an unmodified power law) to 4.5 (which emulates an inner scale). The panel layout and labeling are other-
wise identical to Figure 5. In this case, the effect of the inner break is to increasingly erode small-scale irregularity
structure as p2 is increased. For the shallow spectra case (p1 = 2.5) this significantly reduces the width of the
intensity spectrum and increases the correlation length compared to that for an unmodified power law irregu-
larity spectrum. Since the small-scale content in the intensity SDF is suppressed by eroding the small-scale irre-
gularity structure, we can conclude that the latter is responsible for generating the small-scale intensity
variations. As explained by Booker and MajidiAhi [1981], these small-scale intensity variations are generated
by small-scale irregularities via diffractive processes. Interestingly, the erosion of small-scale structure promotes
focusing by the larger-scale structure that remains. Note that this focusing actually increases the fluctuation
power in the intensity SDF at all scales between the low-frequency return to power law and the spectral break.
A number of researchers [Bhattacharyya et al., 1992, 2003; Engavale and Bhattacharyya, 2005] have observed
that the presence of small-scale structure associated with fully developed plasma turbulence at low latitudes
in the early postsunset hours tends to suppress strong focusing and inhibit S4 values exceeding unity. By late
evening diffusive processes have eroded the small-scale structure, which encourages strong focusing and
can result in S4 values well above unity. Figures 6g, 6h, and 6i show that for steep spectra (p1 = 3.5) the introduc-
tion of an inner scale has virtually no effect, except at frequencies exceeding the spectral break.

A similar experiment to this was performed by Vats et al. [1981], who examined the effect of varying the inner
scale wave number on the intensity variations. We, by contrast, impose the inner scale gradually by means of
steepening high-frequency slope. In both cases, small-scale ionospheric structure is eroded and the efficacy
of large-scale focusing is increased as a result. Vats et al. [1981] noted that the removal of small-scale structure
via progressively increasing the inner scale (even all the way up to the Fresnel scale) does not appreciably
alter the small-scale intensity variations if the scatter is sufficiently strong. This suggests that these small-scale
intensity variations are indeed produced by large-scale features in the ionospheric structure. Indeed, the scin-
tillations at all scales are dominated by the contribution from the large-scale structure. Cases of shallow
sloped spectra exhibit a greater effect since more small-scale structure is initially present and able to be
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suppressed than cases of steeply sloped spectra. Another important consequence of the inner scale is that it
alters the shape of the intensity spectrum at asymptotically high frequencies. Alimov and Rakhlin [1996]
noted that the absence of an inner scale leads to power law behavior at high frequencies rather than the
Gaussian-like decay observed in Booker and MajidiAhi’s simulations [1981]. Alimov and Rakhlin [1996] as well
as Vats et al. [1981] argued that for this reason the inclusion of an inner scale is important for reconciling the
theory with multifrequency observations, particularly when the irregularity spectrum is shallow.

4.4. Morphologies of the Scintillation Index and Intensity Correlation Length

Next we examine the variation of the scintillation index and intensity correlation length as a function of the
strength of scatter. Our purpose is to validate the theoretical predictions for S4 and ξc previously presented in
section 3 for the case of asymptotically strong scatter. Again, we consider the cases of an unmodified power
law, a modified power law with an outer scale, and a modified power law with an inner scale. In the weak
scatter domain (U≪ 1) we confirmed that our numerical simulations are in agreement with the weak scatter
theory. We omit the details of this validation for space considerations. When the scatter is strong, our numer-
ical results show that S4 and ξc are sensitive to an inner scale (but not an outer scale) when the irregularity
spectrum is shallow (p< 3), while the converse is true when the irregularity spectrum is steep (p> 3). The
asymptotic results presented in section 3 state this more strongly: in the limit of asymptotically strong scatter,

Figure 6. Effect of an inner spectral break at wave number μ0 = 10 under strong scatter conditions with U = 1000. The indi-
vidual panels show the (a, d, and g) phase spectra, (b, e, and h) intensity spectra, and (c, f, and i) intensity correlation
functions for different values of the high-frequency spectral index p2 when the low-frequency spectral index is p1 = 2.5
(Figures 6a–6c), p1 = 3.0 (Figures 6d–6f), and p1 = 3.5 (Figures 6g–6i).
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S4 and ξc are controlled entirely by the high-frequency portion of the irregularity spectrum (μ>μ0) when the
spectrum is shallow (p1 ≤ p2< 3) and entirely by the low-frequency portion of the irregularity spectrum
(μ<μ0) when the spectrum is steep (p2> p1> 3). For the general case with p1< 3, p2> 3, irregularity scale
sizes both smaller and larger than the Fresnel scale can contribute to the intensity statistics. In this case,
the location of the spectral break relative to the Fresnel scale dictates the development of the intensity field.

Figure 7 compares the dependence of S4 on the scattering strength for an unmodified power law (Figures 7a
and 7b), a modified power law with an outer scale (Figures 7c and 7d), and a modified power law with an inner
scale (Figures 7b, 7d, and 7f). The dashed curves show the S4 for an unmodified power law to facilitate the com-
parison. First, consider the unmodified power law case (Figure 7a). When p< 3, the S4 index saturates at unity
(with overshoot if p> 2). The increase of S4 with increasing U is monotonic if either p≤ 2 or p≥ 4. Power law
spectra with p> 3 admit sustained quasi-saturation states with S4> 1. The open circles shown along the right
axis indicate the theoretical limiting values given in (20). The agreement with theory is excellent, except for the
case p=3. The reason for this apparent discrepancy is that when p=3 the S4 index converges to unity from
above extremely slowly (we confirmed this by increasing the scattering strength in logarithmic steps to
U=1012). Next, consider the case when an outer scale has been imposed, Figure 7b). For shallow spectra
(p< 3), the outer scale has only the minor effect of causing the saturation state S4 = 1 to be approached more
quickly as the scattering strength increases. For steep spectra (p> 3) the effect of the outer scale is much more
dramatic. The suppression of large-scale irregularity structure mitigates the quasi-saturation state and causes S4
to retreat from its maximum value with increasing perturbation strength, ultimately converging to unity from

Figure 7. S4 versus scattering strength U for different values of the phase spectral index ranging from (a, c, and e) 1.5 to 3.0
and from (b, d, and f) 3.0 to 4.5. The plots in Figures 7a and 7b correspond to an unmodified power law, Figures 7c and 7d to
the outer scale case with μ0 = 0.1, and Figures 7e and 7f to the inner scale case with μ0 = 10. Open circles shown along the
right axis indicate theoretical limiting S4 values.
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above. From this we infer that strong focusing by large-scale structure is responsible for sustaining quasi-
saturation states with S4> 1. A detailed discussion of quasi-saturation states with S4> 1 and how they are miti-
gated by the presence of an outer scale may be found in Chapter 7 of the book by Jakeman and Ridley [2006].

The scattering strength at which the maximum S4 occurs is associated with peak focusing effects. Since U
depends on the ionospheric perturbation strength, frequency, and distance to the screen, all of these effects
are involved in determining the peak focusing condition for a given irregularity model. The maximum S4 that
can be achieved depends on the form of the irregularity model (defined by p1, p2, and μ0). This maximum
may be used to discriminate between prospective models used to interpret scintillation measurements.
For instance, S4 values well above unity cannot occur in conjunction with a shallow irregularity spectrum
(p< 3). At least some portion of the spectrum near the Fresnel scale μ=1 must be steep for this to occur.
Restated in physical terms, S4 values well above unity cannot occur in the presence of significant small-scale
structure, since this structure mitigates the efficacy of strong focusing by the large-scale irregularities.

Finally, we consider the case when an inner scale has been imposed (Figure 7c). For shallow irregularity spec-
tra (p< 3), the presence of an inner scale tends to increase S4 throughout the weak scatter regime relative to
the unmodified power law case. The effect is relatively minor except when the irregularity spectrum is very
shallow. For moderately sloped spectra (p≈ 3) the introduction of an inner scale mitigates some of the strong
focusing effect, but this effect is also minor. For steeply sloped spectra (p> 3) the inner scale has essentially
no effect on the development of S4.

Figure 8. Intensity correlation length ξc versus scattering strength U for different values of the phase spectral index ran-
ging from (a, c, and e) 1.5 to 3.0 and from (b, d, and f) 3.0 to 4.5. The plots in Figures 8a and 8b correspond to an unmo-
dified power law, Figures 8c and 8d to the outer scale case with μ0 = 0.1, and Figures 8e and 8f to the inner scale case with
μ0 = 10. Dotted lines indicate theoretical asymptotic ξc behavior.
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Figure 8 compares the dependence of intensity correlation length on the scattering strength for an unmodified
power law (Figures 8a and 8b), a modified power law with an outer scale (Figures 8c and 8d), and a modified
power law with an inner scale (Figures 8b, 8d, and 8f). The dotted lines show the theoretical limiting correlation
length. First, consider the case for an unmodified power law (Figure 8a). When p< 3, the theoretical correlation
length is that given by (21). The intensity correlation length is an excellent diagnostic of the presence of small-
scale variations in the intensity field. The abundance of small-scale intensity structure generated through dif-
fractive processes produces a rapidly decreasing correlation length with ξc∝U

� 1/(p� 1). For the cases with
p> 3 the theoretical correlation length is that given in (24) and (25). In this case, the small-scale intensity varia-
tions are generated by strong focusing by the large-scale structure, which also results in a rapidly decreasing
correlation length with ξc∝U

� 1/(5� p). In both cases, the agreement between the simulation and the theoretical
results is excellent when U is sufficiently large. Figure 8b shows the dependence of the intensity correlation
length on the scattering strength when an outer scale is present (p1 = 0, μ0 =0.1). For shallow spectra
(p2< 3), the correlation length is practically unaffected by the presence of the outer scale. The theoretical result
(21) is in excellent agreement with the simulations when U is sufficiently large. For steep spectra (p2> 3), the
outer scale mitigates the production of small-scale intensity fluctuations via strong focusing which leads to a
significantly slower rate of decrease in the correlation length ξc∝U

� 1/2. The theoretical result (26) is in excellent
agreement with the simulation results for large U. Finally, consider the case when an inner scale is imposed
(p2 = 4.5, μ0 = 10) (Figure 8c). In this case, we find that the correlation length is affected for shallow spectra
(p1< 3) and the theoretical result (26) is in excellent agreement with the simulation results for large U. For steep
spectra (p1> 3) the results resemble those of the unmodified power law case and the theoretical results (24)
and (25) are in excellent agreement with the simulations for large U. We note that the correlation length for
the moderately sloped case p=3 is relatively insensitive to the presence of either an outer scale or inner scale.

4.5. The Transition From One- to Two-Component Power Law Behavior

In the previous section, we validated the theoretical predictions for S4 and ξc that were given in section 3 for
the case of asymptotically strong scatter. In this section, we examine more closely the process by which this
asymptotic state is attained as the scattering strength increases. A general spectral break is considered, which
may occur at intermediate scales. Initially, let us assume that this spectral break is well separated from the
Fresnel frequency (i.e., μ0≪ 1 or μ0≫ 1). In this case, as the strength of scatter U increases from weak to strong
scatter, S4 and ξc initially follow the same behavior as an unmodified power law with the dominant spectral
index (the same index p as the segment containing the Fresnel scale), as if the spectral break was not present.
This is not surprising since when the scatter is weak only those scale sizes in the irregularity structure close to
the Fresnel scale contribute to the intensity variations. As the scattering strength increases so does the range
of spatial scales in the irregularity structure that contributes to the intensity variations. When the scatter
becomes sufficiently strong, irregularity scales on both sides of the spectral break contribute to the intensity
statistics. When this occurs, the development transitions to that for a two-component power law (which is
unique from the development for an unmodified power law of either slope). In essence, the intensity statistics
do not show the effect of the spectral break until the scattering is sufficiently strong for the break to be felt.
Uscinski et al. [1981] came to a similar conclusion by noting that the presence of an outer scale does not affect
the intensity statistics if the observer is sufficiently close to the screen. Exploiting the universal scaling, we can
generalize this notion from distance to the screen to scattering strength U, which depends on irregularity
strength, frequency, and distance to the screen in a particular way. Below we present quantitative guidelines
for predicting whether a general spectral break will be felt or not and hence whether the asymptotic results
for the unmodified or two-component models will more accurately reflect the results of an experiment for a
given strength of scatter. This idea is conveyed most easily using examples.

Figure 9 shows the development of S4 (Figures 9a–9c) and intensity correlation length ξc (Figures 9d–9f) ver-
sus scattering strength U. Three cases are shown for comparison: an unmodified power lawwith p= 2 (blue), a
two-component power law with p1 = 2 and p2 = 4 (purple), and an unmodified power law with p=4 (red).
Figures 9a and 9d correspond to μ0 = 0.01, Figures 9b and 9e to μ0 = 1, and Figures 9c and 9f to μ0 = 100.
Open circles shown along the right axis indicate theoretical limiting S4 values. Dashed lines indicate theore-
tical asymptotic ξc behavior.

First, consider the case of an outer scale well separated from the Fresnel scale (Figures 9a and 9d). The Fresnel
scale lies in the high-frequency portion of the irregularity spectrum. Because of this, at small values of U the
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development of S4 and ξc resembles that for an unmodified power law with spectral index p=4 (shown in
red, for comparison). Since this spectrum is steep, strong focusing leads to S4 values in excess of 1.5 and
the generation of small-scale intensity structure via large-scale focusing produces a rapidly decreasing corre-
lation length with ξc∝U

� 1. As the scattering strength increases so does the range of spatial scales in the irre-
gularity structure that contributes appreciably to the integral (11). At small to intermediate values of U this
contribution comes predominantly from the steep high-frequency portion of the irregularity spectrum with
p2 = 4, but as the strength of scatter increases, eventually, there is also a contribution from the shallow low-
frequency portion with p1 = 2. At this point, the development transitions to follow that uniquely characteristic
of a two-component spectrum with p1 = 2 and p2 = 4 for further increases in U. Specifically, as the strength of
scatter increases further, S4 retreats from its local maximum and decreases toward unity, while the intensity
correlation length decreases at the slower rate, ξc ∝U

� 1/2. Note that this transition occurs close to the value
of U at which the asymptotic ξc curve (21) for an unmodified power law with p= 2 (blue dashed curve) inter-
sects the asymptotic ξc curve (26) for a two-component spectrum with p1 = 2 and p2 = 4 (purple dashed
curve). From the scattering strength at which this intersection occurs, the definition of U, equations (10)
and (16), and given the ionospheric perturbation strength C ′ p and frequency f= k/2π, we can compute the
distance from the screen at which the spectral break is first felt in the sense that there is a detectable
response to the break in the intensity statistics.

Next, consider the case of an inner scale well separated from the Fresnel scale (Figures 9c and 9f). The Fresnel
scale now lies in the low-frequency portion of the irregularity spectrum. Because of this, at small values of U the
development of S4 and ξc resembles that for an unmodified power law with spectral index p=2 (shown in blue,
for comparison). Since this spectrum is shallow, strong focusing is ineffective and S4 undergoes a monotonic
approach toward unity, while the abundance of small-scale intensity structure generated through diffractive
processes produces a rapidly decreasing correlation length with ξc∝U

� 1. At small to intermediate U the con-
tribution to the integral (11) comes predominantly from the shallow low-frequency portion of the irregularity
spectrum with p1 = 2, but as the strength of scatter increases eventually there is also a contribution from the
steep high-frequency portion with p1 =4. At this point, the development transitions to follow that characteristic
of a two-component spectrum with p1 = 2 and p2 = 4 for further increases in U. The S4 index continues its trajec-
tory toward unity, while the intensity correlation length decreases at the slower rate, ξc∝U

� 1/2. Note that this

Figure 9. (a–c) S4 index and (d–f) intensity correlation length ξc versus scattering strength U. Three cases are shown for
comparison: an unmodified power law with p = 2 (blue), a two-component power law with p1 = 2 and p2 = 4 (purple),
and an unmodified power law with p = 4 (red). Figures 9a and 9d correspond to μ0 = 0.01, Figures 9b and 9e to μ0 = 1, and
Figures 9c and 9f to μ0 = 100. Open circles shown along the right axis indicate theoretical limiting S4 values. Dashed lines
indicate theoretical asymptotic ξc behavior.

Radio Science 10.1002/2015RS005903

CARRANO AND RINO TWO-COMPONENT IRREGULARITY SPECTRA 808



transition occurs close to the value of U at which the asymptotic ξc curve (24) for an unmodified power lawwith
p=4 (red dashed curve) intersects the asymptotic ξc curve (26) for a two-component spectrum with p1 = 2 and
p2 = 4 (purple dashed curve). As before, the scattering strength at which this intersection occurs can be used

with equations (10) and (16), along with the ionospheric perturbations strength C ′
p and frequency to compute

the distance from the screen at which the spectral break first influences the intensity statistics.

Finally, consider the case of a spectral break that is close (or, in this case, equal) to the Fresnel wave number
(Figures 9b and 9e). In this case the contribution to the integral (11) comes from both sides of the spectral
break, even when the scatter is weak. In this case, the presence of the break is detectable at any strength
of scatter and the development of S4 and ξcwill be that of a two-component spectrum (which is unique from
the development for an unmodified power law of either slope). In this case, as the scatter becomes strong
there is a small overshoot in the approach of S4 toward unity which was absent from the inner scale case
(Figure 9c). This overshoot is due to the increased efficacy of large-scale focusing as a result of the suppres-
sion of small-scale structure relative to the inner scale case. As soon as the intensity correlation length begins
to vary with increasing strength of scatter, the rate of decrease is the slower rate predicted for a two-
component power law, ξc∝U

� 1/2.

We repeated this experiment using a different value of the low-frequency irregularity slope in order to
demonstrate the establishment of a quasi-saturation state for two-component irregularity spectra with
p2> p1> 3. Figure 10 shows the development of S4 (Figures 10a–10c) and intensity correlation length ξc
(Figures 10d–10f) versus scattering strength U. The following three cases are shown for comparison: an
unmodified power law with p=3.5 (blue), a two-component power law with p1 = 3.5 and p2 = 4 (purple),
and an unmodified power law with p= 4 (red). Figures 10a and 10d correspond to μ0 = 0.01, Figures 10b
and 10e to μ0 = 1, and Figures 10c and 10f to μ0 = 100. Open circles shown along the right axis indicate the-
oretical limiting S4 values. Dashed lines indicate theoretical asymptotic ξc behavior. Note that the limiting
value of S4 is significantly higher than unity for all curves in Figure 10. The asymptotic theoretical result
(20) predicts that the limiting S4 will be (5/3)1/2 for both the unmodified power law with p=3.5 (blue curve)
and the two-component power law with p1 = 3.5 and p2 = 4 (purple). Similarly, the theoretical result (20) pre-
dicts that the limiting S4 will be (3)

1/2 for the unmodified power lawwith p= 4 (red). These predictions are well

Figure 10. (a–c) S4 index and (d–f) intensity correlation length ξc versus scattering strength U. Three cases are shown for
comparison: an unmodified power lawwith p = 3.5 (blue), a two-component power lawwith p1 = 3.5, p2 = 4 (purple), and an
unmodified power law with p = 4 (red). Figures 10a and 10d correspond to μ0 = 0.01, Figures 10b and 10e to μ0 = 1, and
Figures 10c and 10f to μ0 = 100. Open circles shown along the right axis indicate theoretical limiting S4 values. Dashed lines
indicate theoretical asymptotic ξc behavior.
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substantiated by the results of the numerical simulation shown in Figure 10. The slight change in index
between p1 and p2 is not sufficient to mitigate the development of small-scale structure via strong focusing
in this case. As in the previous case (Figure 9), when the spectral break is well separated from the Fresnel scale
(Figures 9a and 9c), the development of S4 and ξc initially (low to moderate U) follows the asymptotic beha-
vior of an unmodified power law with the dominant spectral index. At the value of Uwhere the asymptotic ξc
curves for this unmodified power law and the two-component law intersect, the development transitions to
that predicted for the latter. We note that for the outer scale case (Figure 9a) this transition takes place very
slowly (over several orders of magnitude in scattering strength). We also note that the development is rela-
tively similar for the cases with μ0 = 1 and μ0 = 0.01. The reason for this is that the change in index at the spec-
tral break from p1 = 3.5 to p2 = 4.0 is relatively small in this case.

5. Conclusions

In this paper we have extended the power law phase screen theory for ionospheric scintillation to account for
the case where the refractive index irregularities follow a two-component power law spectrum. Using this
spectral model, we solved the fourth moment equation governing the intensity fluctuations for the case of
two-dimensional field-aligned ionospheric irregularities. A specific normalization was invoked to exploit
the self-similar properties of the problem to achieve a universal scaling, such that different combinations
of perturbation strength, propagation distance, and frequency produce the same results. The numerical algo-
rithm was validated using new theoretical predictions for the behavior of the scintillation index and intensity
correlation length under strong scatter conditions. A number of numerical experiments were performed to
explore the morphologies of the intensity spectrum, scintillation index, and intensity correlation length as
functions of the spectral indices and strength of scatter; retrieve phase screen parameters from intensity scin-
tillation observations; investigate the effects of an imposed outer scale, intermediate break scale, or inner
scale on the development of the scintillation; explore the relative contributions to scintillation due to
large- and small-scale ionospheric structures; and quantify the conditions under which a general spectral
break will influence the scintillation statistics.

Our first conclusions are relevant to the behavior of the intensity statistics in the strong scatter regime. The
asymptotic results presented in section 3 show that for shallow spectra (p1≤ p2< 3) the limiting behavior of
the intensity statistics is dictated by the high-frequency portion of the irregularity spectrum (μ>μ0), whereas
for steep spectra (p2> p1> 3) it is dictated by the low-frequency portion of the irregularity spectrum (μ<μ0).
Our numerical results confirm that shallow power law spectra are sensitive to an inner scale but insensitive to an
outer scale; conversely steep spectra are sensitive to an outer scale but insensitive to an inner scale. Unmodified
power law spectra with p≈ 3 are relatively insensitive to both outer and inner scales. We note that the two-
component model allows for only one spectral break, and therefore, we cannot impose both outer and inner
scales simultaneously. It turns out that this restriction is not limiting in practice because only one of these exerts
controls on the scintillation statistics at a time. An outer scale can be omitted from the model without conse-
quence if the spectrum is shallow; similarly, an inner scale can be omitted from themodel without consequence
if the spectrum is steep. For mixed-slope spectra (p1< 3, p2> 3), irregularity scales both large and small contri-
bute to the intensity statistics in the strong scatter limit. In this case, the spectral slopes and location of the spec-
tral break relative to the Fresnel scale control the development of the intensity statistics. It should be noted,
however, that the irregularities must be homogenous for the statistical theory of scintillation to be valid (i.e.,
the structure must admit Fourier decomposition). If the irregularities are inhomogeneous at the largest scale
sizes, an outer scale may not be clearly defined. Departures from the strong scatter theory may be anticipated
if the large-scale inhomogeneous structures play a dominant role in the scattering.

By manipulating the large- or small-frequency spectral slopes in the two-component model, we gradually
eroded large- and small-scale irregularity structures and observed the effects on scintillation development
in the strong scatter regime. Steep power law irregularity spectra emphasize the large-scale structures which
generate small-scale irregularity structure via strong focusing. Shallow power law irregularity spectra empha-
size the small-scale irregularity structures which scatter the radio waves more effectively (in a wider range of
directions), thereby reducing the efficacy of large-scale focusing. For shallow irregularity spectra, the small-
scale intensity variations are generated primarily by small-scale irregularity structures via diffraction. The
shape of the irregularity spectrum determines the relative proportion of these two classes of ionospheric
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structure, and therefore which of these physical processes (focusing vs. diffraction) will exert a dominant role,
the slope p=3 being the special case in which these physical processes are in relative balance. In our numer-
ical experiments, we observed that if the spectrum is steep (p< 3), eroding the large-scale structure sup-
presses both the low-frequency enhancement and high-frequency spectral broadening. Hence, the large-
scale irregularity structure is responsible for generating (via focusing) these intensity variations at the large
and small scales. If the spectrum is shallow (p< 3), eroding the small-scale structure suppresses the small-
scale intensity variations. Hence, the small-scale irregularity structure is responsible for generating (via dif-
fraction) the small-scale intensity variations. Interestingly, the erosion of small-scale structure also promotes
focusing by the larger-scale structure that remains. This focusing acts to increase the power in the intensity
fluctuations at all scales between the low-frequency return to power law and the spectral break. In particular,
the low-frequency enhancement grows in amplitude as the small-scale structure is progressively eroded. This
behavior demonstrates the highly nonlocal behavior in frequency, which is caused by the nonlinearity of the
system, when the scatter is strong. This is in stark contrast to the weak scatter case, where each scale size of
the intensity fluctuations is controlled by the corresponding scale size in the structure.

Previous researchers have observed that the presence of small-scale structure associated with fully developed
plasma turbulence at low latitudes in the early postsunset hours tends to suppress strong focusing and inhibit
S4 values exceeding unity [Bhattacharyya et al., 1992, 2003; Engavale and Bhattacharyya, 2005]. Later in the eve-
ning, diffusive processes erode the small-scale structure, which encourages strong focusing and can result in S4
values well above unity. Engavale and Bhattacharyya [2005] noted that “large-scale irregularities give rise to
focusing effects (S4> 1) when phase fluctuations are sufficiently large. The focusing effect is absent for irregu-
larities with power law spectra that have shallow slopes (p< 3), which implies a significant presence of small-
scale irregularities.” These authors also considered the two-component spectrum with p1 = 2, p2 = 4, which
we classify asmixed-slope type. They noted that “the break frequencymust be sufficiently large (μ0< 1) in order
for S4 to exhibit focusing effects; otherwise, the small-scale irregularities are effective in scattering the radio
waves and the focusing effect is lost.” Our results are consistent with these earlier observations.

We also conducted numerical experiments to investigate the process by which the asymptotic state is attained
as the scattering strength is increased. First, consider the situation where the spectral break is well separated
from the Fresnel frequency. As the strong scatter regime is approached the scintillation index and correlation
length initially follow the behavior for an unmodified power law with the dominant spectral index.
Effectively, the intensity field develops as if the spectral break was not present. This is not surprising since when
the scatter is weak only those scales in the irregularity structure close to the Fresnel scale contribute to the
intensity variations. As the scattering strength increases so does the range of spatial scales in the irregularity
structure that contributes to the intensity variations. When the scatter becomes sufficiently strong, irregularity
scales on both sides of the spectral break contribute to the intensity statistics. When this occurs, the develop-
ment of the scintillation index and correlation length undergoes a transition to follow the behavior for a two-
component spectrum. This behavior differs from the development for an unmodified power law of either slope.
When the spectral break is not well separated from the Fresnel frequency, irregularity scales on both sides of the
spectral break contribute to the intensity statistics even inweak scatter. In this case, the intensity statistics reflect
the presence of the break at any strength of scatter and the development of the scintillation index and correla-
tion length follows the behavior unique to a two-component spectrum. In summary, depending on the scale
separation between the spectral break and Fresnel frequency, the intensity statistics do not “feel” the break until
the scattering is sufficiently strong. We show that the transitional strength of scatter at which the spectral break
begins to be felt occurs near the intersection of the asymptotic correlation lengths predicted for the unmodified
and two-component power law models.

Uscinski et al. [1981] came to a similar conclusion by noting that the presence of an outer scale does not affect
the intensity statistics if the observer is sufficiently close to the screen. The results of our analysis generalize
this notion to the case of an arbitrarily located spectral break. Moreover, by exploiting the universal scaling
we can generalize the Uscinski result for any combination of irregularity strength, frequency, and distance
to the screen. We are therefore able to predict whether a general spectral break will be felt or not and thus
whether the asymptotic results for the unmodified or two-component power law models will more accu-
rately reflect the results of an experiment. This has important ramifications for applications which use mea-
surements of the intensity correlation length to infer the strength of scintillation when the observations
are saturated [Franke and Liu, 1983; Carrano et al., 2015].
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