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Abstract For decades, analog beacon satellite receivers have generated multifrequency narrowband
complex data streams that could be processed directly to extract total electron content (TEC) and
scintillation diagnostics. With the advent of software-defined radio, modern digital receivers generate
baseband complex data streams that require intermediate processing to extract the narrowband
modulation imparted to the signal by ionospheric structure. This paper develops and demonstrates a
processing algorithm for digital beacon satellite data that will extract TEC and scintillation components. For
algorithm evaluation, a simulator was developed to generate noise-limited multifrequency complex digital
signal realizations with representative orbital dynamics and propagation disturbances. A frequency-tracking
procedure is used to capture the slowly changing frequency component. Dynamic demodulation against
the low-frequency estimate captures the scintillation. The low-frequency reference can be used directly for
dual-frequency TEC estimation.

1. Introduction

Beacon satellite radio transmissions have been used for ionospheric diagnostics since Sputnik I was launched
in 1957. The varying Doppler shift imposed by the changing range to the satellite was used initially to
determine Sputnik’s orbit. Later, Doppler tracking was used for position estimation with TEC corrections
derived from dual-frequency measurements. Intensity scintillation caused by small-scale structure in the iono-
sphere was known from radio astronomy observations. Early research is summarized in the review article by
Swenson [1994].

Technology evolved rapidly, but analog receivers were used for ionospheric diagnostics until fairly recently.
Receivers developed for the wideband satellite beacon launched in 1975 processed simultaneous L band,
UHF, and VHF signals, which were demodulated against an S band reference [Fremouw et al., 1978].
Currently, satellites with Coherent Electromagnetic Radio Tomography (CERTO) beacons transmit L band,
UHF, and VHF signals for ionospheric diagnostics [Bernhardt and Siefring, 2008]. With the advent of
software-defined radio, analog receivers are being replaced with digital receivers that provide critically
sampled baseband complex signals.

Digital processors for radio signals from satellite-borne transmitters must track the varying Doppler shift
induced by changing path delay. This is true for Global Navigation Satellite System and narrowband bea-
con transmissions of interest here. The time-honored solution to efficient Doppler tracking is provided by
phase-locked loops (PLLs). However, it is noteworthy that digital phase-locked loops operate with memory
equal to the order of the loop transfer function. For example, the widely used second-order loop uses only
two-signal samples to generate a phase correction update. The PLL efficiency is essential for real-time process-
ing, but it requires a high signal-to-noise ratio (SNR). It is intuitively clear and borne out by analyses cited later
in the paper that frequency estimates based on larger data blocks can achieve better low-SNR performance,
albeit with significantly more computation.

The current generation of satellites that carry CERTO beacons do not support transmit antennas with uniform
frequency-independent illumination; moreover, typical ground-mounted, broad-beam receiving antennas
provide very little multipath or interference rejection. Consequently, digital or analog receivers that use
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conventional PLLs may not perform well. However, digital receivers operate at data rates (25 to 50 kHz) that
allow horizon-to-horizon recording for post-pass processing. This provides an opportunity to exploit the
improved performance that direct frequency tracking affords.

Yamamoto [2008] demonstrated a software-defined multifrequency receiver with a post-pass processing. The
processing scheme, as described in section 4 of his paper, estimates a local spectral peak followed by narrow-
band filtering and phase extraction. Figure 3 in his paper shows the extracted peak intensity and the frequency
estimate derived from the processor. The signal intensities show uncorrelated variations over more than 20 dB,
which is most likely multipath. Figure 4 in Yamamoto’s paper shows a comparison of TEC estimates derived
from a conventional receiver using phase tracking and his Fourier-domain method. The conventional receiver
lost about 30% of the data, which can be attributed to loss of PLL lock under low-noise conditions.

This paper presents a detailed analysis of the performance that can be achieved with Fourier-domain process-
ing schemes. We first review digital signal processing objectives. We then demonstrate a frequency-domain
processing algorithm with simulated multifrequency noise-limited signals. Noise-limited signal realizations
are generated by combining a slab TEC variation with simulated propagation disturbances. To the extent that
the frequency-tracking scheme achieves the best performance commensurate with processing intervals that
support linear frequency change, the simulation results establish performance bounds for TEC estimation and
propagation diagnostics under strong scatter conditions.

The essential characteristics of a complex signal at the output of a beacon receiver low-noise amplifier are
captured by the signal model

v(t) =
√

SNR(t)𝛿h(t; fC)m
(

t + r(t)∕c − KN(t)∕
(

2𝜋f 2
C

))
exp

{
2𝜋ifC

(
t + r(t)∕c − KN(t)∕

(
2𝜋f 2

C

))}
+ e(t). (1)

The deterministic signal amplitude component,
√

SNR(t), is defined by the signal-to-noise ratio (SNR)

SNR (t) = SNRm∕
(

r (t) ∕ro

)2
, (2)

where SNRm is the minimum SNR at the acquisition range ro. The noise contribution, e(t), has unity variance
and is uncorrelated at the Δt = 1∕BW sample intervals. The parameter fC is the center frequency, which is the
formal phase reference. The parameter c is the vacuum velocity of light, m(t) is an imposed complex
modulation with unit average intensity and frequency range −BW∕2 < f < BW∕2. For efficient transmission
fC >> BW∕2. The remaining model components, KN (t) ∕2𝜋f 2

C and 𝛿hk(t; fC), respectively, represent
quasi-deterministic phase and complex stochastic modulations imposed by propagation through the
ionosphere. A detailed development of (1) can be found in chapter 5 of Rino [2011].

Analog receivers remove the carrier term, exp{2𝜋ifC t}, with mixing and filtering operations. Digital receivers
sample the RF output directly, which amounts to replacing t in (1) by t0 + kΔt. From the periodicity of the
complex exponential, it follows that

exp
{

2𝜋i
(

fCΔtk
)}

= exp
{

2𝜋i
(

fCΔtk − M
)}

, (3)

where M is an integer. If the digital sampling is locked to the carrier frequency, then fcΔt is an integer as well,
whereby the carrier term is unity. Formally, the under sampled radio-frequency signal has been aliased to
baseband. The sampled complex data stream at the output of a digital receiver takes the simpler form

vk =
√

SNRk𝛿h(kΔt; fC)mk exp
{

2𝜋ifC

(
rk∕c − KNk∕2𝜋f 2

C

)}
+ ek. (4)

A smoothly varying background ionosphere induces a phase shift proportional to the integrated electron
density variation along the propagation path:

𝛿𝜙 = −rec∕f ∫ 𝛿Nedl (5)

= −(rec∕f )N, (6)

where 𝛿Ne is the electron density variation, re is the classical electron radius, and

N = ∫ 𝛿Nedl electrons∕m2 (7)
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Figure 1. Circular overhead orbit range and slant path variation (sec(𝜃p)) for Tp = 100 min, Hs = 1000 km, and
HP = 350 km.

represents the path-integrated electron density, which is measured in TEC units of 1016 electrons per square
meter of integrated path length. The translation constants are conveniently absorbed in the K parameter

K =
rec

2𝜋
× 1016 = 1.3454 × 109 m2∕s. (8)

The refractive index includes the constant background that establishes the propagation velocity in a
uniform medium.

2. Simulated Digital Signals

Generating realizations of the signal defined by (4) requires construction of the stochastic transfer function,
𝛿h(kΔt; fC). The computation is greatly simplified by replacing the extended ionosphere by a one-dimensional

Figure 2. Doppler shifts induced by circular overhead orbit range change at CERTO beacon frequencies.
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path integral, which we refer to as an equivalent phase screen. Moreover, Carrano et al. [2012] have shown
that equivalent phase screens derived from two-dimensional projections onto the propagation plane are very
effective for interpreting scintillation from predominantly cross-field paths. The projected two-dimensional
geometry can be derived from orbital elements and the receiver location. However, for simulations, repre-
sentative dynamics are captured by spherical Earth circular overhead orbits, which also facilitate slab TEC
computation. An overhead circular orbit geometry is defined by the orbital period, Tp, the satellite height
above the Earth, Hs, and the reference ionospheric penetration height, Hp. The vertical TEC, STEC0, and the
SNR at the maximum visible range, SNRm, complete the signal specification. The orbit model formulae are
summarized in the Appendix.

The upper frame of Figure 1 shows the horizon-to-horizon range variation for the representative low
Earth orbit parameters Tp = 100 min, Hs = 1000 km, and Hp = 350 km. The lower frame is the secant of the
propagation angle, which determines the path-length variation within a slab centered at Hp. The geometric
Doppler shifts for the nominal CERTO beacon frequencies (150, 400, and 1066 2/3 MHz) are shown in Figure 2.
The corresponding Doppler shifts induced by the TEC change with STEC0 = 50 TEC units are shown in Figure 3.
The SNR variation induced by the range change (path loss) is shown in Figure 4 for SNRm = 1.

Ideally, forward propagation computations would be performed over local parallelogram segments as shown
schematically in Figure 5. The magenta circular ionospheric intercept arc is approximated by 105 linear seg-
ments. An equivalent phase screen is centered on each segment. The directionally dependent complex field
centered on the receiver is computed. With space-to-time conversion using the orbital velocity at the pen-
etration point, the field can be interpreted as a time series segment. The field realization is constructed by
concatenating the time series segments. A linear detrend forces the phase to be zero at the start and end of
each segment, effectively removing the discrete phase change associated with the step direction change.

Stochastic structure is constructed by generating phase-screen realizations with two-component power law
spectral density functions of the form

Φ𝛿𝜙(q) = Cp𝜑(q), (9)

where q = 2𝜋∕s is the magnitude of the spatial wave number,

𝜑(q) =
{

q−p1 q < q0

qp2−p1
0 q−p2 q> q0

, (10)

q0 is the spatial wave number at which the power law index transitions from p1 to p2, and

Cp = r2
e𝜆

2lpCs. (11)

The parameters p1, q0, and p2 are taken from published in situ measurements [Basu et al., 1983]. For algorithm
evaluation, it is convenient to impose the same turbulence level, Cp, for each slab. Although physically unre-
alistic, the varying propagation geometry generates a broad range of scintillation levels. The complete signal
realization combines the deterministic components and the stochastic modulation. The stochastic contri-
bution is interpolated to the 50 kHz rate required to capture the largest geometric Doppler shift at L band
(see Figure 2).

The signal frequency content over time intervals long enough to resolve tens of Hertz is dominated by the
geometric Doppler. Spectrograms constructed from sequential power spectral density functions (PSDs) are
often used to display this slow time signal structure. The unwindowed PSD

Pn = 1
N
||v̂n

||2
, (12)

where v̂n is the discrete Fourier transform (DFT)

v̂n =
N−1∑
k=0

vk exp {−2𝜋ink∕N} , (13)

resolves the discrete frequencies

fpn = [0 ∶ N∕2 − 1,−N∕2 + 1 ∶ −1]Δf , (14)
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Figure 3. Doppler shifts induced by TEC change.

where Δf = 1∕ (NΔt). Selection of the PSD interval T = NΔt determines both the spectrogram frequency
resolution Δf = 1∕T and the time for frequency change.

Typical signals as represented by (4) are confined to a few hundred Hertz about the mean Doppler shift. To
the extent that the changing range to the satellite is known, the geometric Doppler can be removed by the
dynamic demodulation operation

vk = vk exp{−2𝜋ifC rk∕c}, (15)

where rk is the range to the kth segment reference. The demodulated signal can be filtered and downsampled
to a frequency range that captures the modulation about the slowly changing geometric Doppler.

Figure 6 shows the SNR

SNRk = ||vk
||2 (16)

obtained by dynamically demodulating a signal realization with the known geometric Doppler and down-
sampling with filtering to 500 Hz. The peak SNR in the absence of scintillation is 15 dB. At onset, the SNR is at

Figure 4. SNR variation induced by range change.
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Figure 5. Schematic representation of disturbed regions about rays from source to receiver. Magenta curve is
ionosphere penetration point.

the noise level (0 dB). Scintillation-induced fades drive the signal intensity to −40 dB. Fresnel filtering strongly
suppresses contributions from the large-scale ionospheric phase structure that initiated the computation at
the phase screen.

The demodulated signal phase,

𝜑k = unwrap
(

arctan
(

Re
(

vk

)
, Im

(
vk

)))
, (17)

is more complicated. Large-scale phase structure dominates the signal phase even in the absence of the geo-
metric Doppler contribution. Figure 7 shows the demodulated and downsampled signal phase after removal
of the imposed TEC contribution. For algorithm evaluation, Figures 6 and 7 serve as scintillation truth.

Figure 6. SNR variation of complex signal realizations with geometric Doppler removed following by filtered
downsampling to 500 Hz.
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Figure 7. Scintillation phase derived from complex signal realization with geometric Doppler and imposed
TEC removed.

The remainder of this paper describes and demonstrates a processing algorithm that first estimates
the slow-Doppler variation of the signal. The slow-Doppler variation includes both geometric and
TEC-induced components. Thus, the slow-Doppler estimate can be used directly for dual-frequency TEC
estimation. Dynamic demodulation of the complex signal against the slow-Doppler estimate extracts the
scintillation component.

3. Digital Signal Processing

Frequency tracking is the first signal processing operation for both narrowband and modulated signals. In
effect, the estimated instantaneous frequency becomes the phase reference for all ensuing signal process-
ing operations. If the transmitted signal is modulated, frequency tracking must be combined with waveform
compression. Here only narrowband processing will be considered.

Analog receivers use phase-locked loops to track the signal frequency. The phase change associated with the
slow-frequency variation is used to dynamically demodulate harmonically related signals. Let

𝜑
(nr)
k = 2𝜋if (nr)

C rk∕c − KNk∕f (nr)
C + 𝜙k + 𝜖 (18)

represent the reference oscillator phase for frequency reference index nr . The phase of a lower frequency
signals (indexed n) dynamically demodulated with the reference signal is

𝜑
(n)
k − 𝜑

(nr )
k

(
f (n)C ∕f (nr )

C

)
= −KNk∕f (nr )

C

(
1 −

(
f (n)C ∕f (nr )

C

)2
)
+ 𝜙(n) − 𝜙

(nr )
k

(
f (n)C ∕f (nr )

C

)
+ 𝜖 ≃ −KNk∕f (n)C + 𝜙(n) + 𝜖. (19)

Here the error term 𝜖 represents the background noise contribution. The approximation assumes that the
frequencies are sufficiently well separated that reference-frequency propagation disturbances are negligible,
which was the case for wideband. More often both frequencies admit propagation disturbances. In that case,
phase estimates are combined to estimate TEC

1
K

𝜑
(2)∕f (2)C − 𝜑

(1)∕f (1)C

1∕
(

f (1)C

)2
− 1∕

(
f
(2)
C

)2
= NTEC −

𝜙
(2)
k ∕f (2)C − 𝜙

(2)
∕f (1)C

1∕
(

f (1)C

)2
− 1∕

(
f
(2)
C

)2
+ 𝜖. (20)
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Figure 8. (top) VHF Doppler from R realization. (bottom) Error with no denoising (red) and denoising (blue).

3.1. Frequency Hypothesis Tracking
The time-varying frequency concept can be formalized by defining instantaneous frequency as

𝛿f (t) = 1
2𝜋

d𝜑(t)
dt

. (21)

The survey paper by Boashash [1992a] presents a detailed development. A companion paper by Boashash
[1992b] reviews digital processing methods that can estimate instantaneous frequency. Section F of Boashash
[1992b] describes a Fourier peak tracking method, which is identical to the frequency hypothesis tracking
(FHT) method described in chapter 5 of Rino [2011]. A sub-bin frequency-tracking method described in
chapters 7.14 and 10.11 of Tsui [2005] uses the same principle.

Figure 9. Range errors from estimates derived from R realization phase.
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The concept underlying all these methods can be demonstrated by replacing nk∕N in (13) with kΔtn𝛼, where
𝛼 takes any value between the Nyquist frequency limits ±1∕ (2Δt):

h(𝛼Δt) =
N−1∑
k=0

vk exp {−2𝜋ikΔt𝛼} . (22)

Fractional frequency is defined as the variation between the discrete DFT frequencies. That is,

𝛼∕Δf = n + 𝛿, (23)

where 𝛿 is a fraction between −1∕2 and 1∕2. The fractional-frequency PSD is defined as

H(𝛿) = |h(𝛼Δt)|2 ∕N. (24)

Assume that over the time interval T ,

vk ≃
√

SNR exp
{

2𝜋𝛿f kΔt
}
+ ek. (25)

With (25) substituted for vk , the expectation value of the fractional-frequency PSD becomes

⟨H(𝛿)⟩ = SNR
N

||||||
N−1∑
k=0

exp
{
−2𝜋ik(𝛿 − 𝛿f∕Δf )∕N

}||||||
2

+ 1 (26)

= SNR
sin2

(
2𝜋NΔt(𝛿 − 𝛿f∕Δf )

)
N sin2

(
2𝜋Δt(𝛿 − 𝛿f∕Δf )

) + 1. (27)

The maximum value,

max ⟨H(𝛿)⟩ = N ∗ SNR + 1, (28)

is achieved when 𝛿 = 𝛿f∕Δf . The factor N represents a coherent processing gain that can be exploited.

To track a slowly changing frequency, max H(𝛿) is computed for each block of N data samples offset by O
samples. The samples within each block are defined by the sequences

k(m) = mN(1 − O∕N) + k for0 ≤ k ≤ N − 1,m = 0, 1, · · · , nblocks. (29)

The search is initiated with the peak frequency from the previous segment. A peak signal intensity esti-
mate is recovered by evaluating H(𝛿) at the peak fractional frequency. Phase is recovered by trapezoidal-rule
integration

𝜙k+1 = 𝜙k − 2𝜋
(

f Dopk + f Dopk+1

)
T∕2. (30)

Offset and block size parameters are set to keep the phase change over the integration interval less than 𝜋

radians. If this condition is not met, then the frequency estimation errors oscillate about the true frequency
much like an out-of-lock phase tracking loop. Offsets less than N∕2 do not reproduce the smallest-scale
structure reliably.

To evaluate FHT, signal realizations were constructed at the Communication/Navigation Outage Forecast
System CERTO beacon VHF, UHF, and L band frequencies. Realizations at each frequency were constructed
with noise plus geometric range only (designated R), with noise plus geometric range and TEC only
(designated T), and with noise plus geometric range, TEC, and scintillation (designated H). FHT tracking with
N = 4096 and O = 2048 was performed for each realization. The FHT output reports at intervals

Tseg = Odt = 41 ms (24.41 Hz) (31)

include SNR, f Dop, phase, and a lock flag indicating that the FHT SNR was greater than a set threshold of 15 dB.

Figure 8 (top) shows the VHF Doppler from the R realization. The red curve in Figure 8 (bottom) is the difference
between the true geometric Doppler and the FHT estimate. The uncorrelated Doppler errors vary with SNR.
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Figure 10. (top) TEC and errors using T realizations.

Wavelet-based denoising as described in chapter 11.3 of Mallat [2005] was applied to the FHT Doppler. Phase
derived from denoised Doppler estimates is defined by (30). To present the phase errors in physical units,
Figure 9 shows the range errors incurred by replacing 𝜙k in the relation

r̂k = c𝜙k∕
(

2𝜋fC

)
(32)

with the R realization phase. The range errors are less than 1 m, but they exhibit trend-like variations attributed
to the integral relation between phase and frequency. Integrating uncorrelated noise samples produces
Brownian motion, which has a 1∕f Fourier spectrum leading to the trend-like departures from strict
stationarity. Power law phase noise is a well-known characteristics of oscillators [Lee and Hajimiri, 2000].

Dual-frequency denoised FHT Doppler estimates can be used directly to estimate TEC by substituting phase
pairs into (20). The Doppler errors for the T realizations are indistinguishable from the errors shown in Figure 8.

Figure 11. Corrected range estimates from (33) using phase estimates and dual-frequency T realizations.
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Figure 12. (top) VHF Doppler from H realization. (bottom) Error with no denoising (red) and denoising (blue).

The upper frame of Figure 10 shows the TEC truth offset to generate a physical TEC variation. The lower frame
summarizes T-realization TEC errors obtained from three C/NOFS frequency pairs. The numbers 1,2,3 refer to
VHF, UHF, L band, respectively. The noise-limited errors are significantly less than 1 TEC unit. Although phase
meander can be ascertained in the errors, it appear to be mitigated by the difference operation in (20).

Figure 13. Intensity scintillation derived by dynamic demodulation with denoised FHT Doppler estimate (blue) overlaid
on the intensity truth (red).
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Figure 14. Phase scintillation derived by dynamic demodulation with denoised FHT Doppler estimate (blue) overlaid on
the phase truth (red).

TEC estimates can be used to correct range estimates. Figure 11 shows the errors for corrected range estimates
derived from

r̂k = 𝜑kc∕
(

2𝜋fC

)
+ K̂Nkc∕

(
2𝜋f 2

C

)
, (33)

with the average TEC and dual-frequency T realization phase estimates. The errors are essentially the same
as shown in Figure 9. These expected results verify the FHT tracker operation in the absence of scintillation.

Figure 15. Zoomed in 1 s segment of phase scintillation shown in Figure 14.
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Figure 16. TEC estimates derived from H realization denoised Doppler.

The results also illustrate SNR-limited performance bounds. The results were obtained at SNR levels that can
be achieved with good engineering design.

3.2. Scintillation Diagnostics
Single-frequency measurements must contend with geometric Doppler, TEC, and scintillation, which occupy
overlapping time scale ranges. Results presented in section 3.1 showed that the geometric Doppler and TEC
contributions are fully captured at the 24 Hz rate. The strategy here is to use the denoised Doppler to dynami-
cally demodulate the complex signal. To the extent that the denoised Doppler retains only the geometric and
TEC components, the scintillation phase is recovered. Figure 12 summarizes the FHT VHF Doppler as derived
from H realizations. Upon comparing Figures 12 and 8 with allowance for the near order-of-magnitude change
of scale, it is clear that the denoised Doppler residual (blue) retains structure that lies in the transition from
TEC to phase scintillation.

Because the dynamic demodulation operation does not affect signal intensity, we expect the scintillation
intensity estimate to faithfully reproduce the truth. This is demonstrated in Figure 13, which shows VHF, UHF,
and L band scintillation intensity estimates downsampled to 500 Hz (blue). The results are overlaid on the
noise-limited intensity truth from (6). The suppression of the deepest fades, which are approaching the noise
level, is attributed to SNR limitations.

Figure 14 shows the VHF, UHF, and L band phase scintillation estimates. The systematic departures are
attributed to the residual structure in the denoised Doppler. Because there is no theory that addresses phase
scintillation under strong scatter conditions, these should be of little concern. Figure 15 shows an expanded
plot of a 1 s data segments. The small-scale structure is preserved. It is predominantly the high-frequency
structure that can be exploited for interpreting phase scintillation.

Figure 16 shows the result of using phase from the denoised Doppler estimates to calculate TEC. Because
TEC would be calibrated independently, the offsets from the zero starting point are not significant. The
results show that estimates with frequency pairs that use the saturated VHF scintillation can exceed 4 TEC
units. For most TEC applications, this is an acceptable error. The result supports the generally accepted
conclusion that as long as the SNR exceeds the lock threshold, TEC estimates are viable with the stated
error bounds.
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4. Summary and Conclusions

This paper demonstrates a digital processing algorithm for digitally recorded baseband beacon satellite sig-
nals. As currently configured, the algorithm first estimates the slowly varying Doppler component of the
signal by applying the FHT estimator. Coherent processing gains of more that 30 dB support the fine fre-
quency estimation. A 24 Hz report interval captures the geometric Doppler and TEC contributions to the
signal phase. A second operation uses the denoised FHT Doppler estimates to dynamically demodulate the
full-bandwidth signal. The demodulated signal, which carries the frequency content above 24 Hz, is downsam-
pled and filtered to a bandwidth that captures the complex scintillation. Because the demodulation operation
only affects the signal phase, the intensity scintillation preserves the full frequency range.

At the SNR levels used for the simulations, both TEC and scintillation components are recovered with high
fidelity, as verified by direct comparisons to the input truth. The real-world challenge of identifying the
phase-structure components that can be interpreted as path-integrated phase and the large-scale structure
generated by diffraction remains, but FHT processing is well suited for generating appropriate data for study.

The FHT tracking operation uses a time-consuming search to generate refined Doppler estimates. Processing
the 50 kHz data segments with unoptimized code required approximately 20 min of processing on a high-end
PC per frequency. The orbital period for a typical low-orbiting CERTO beacon is 100 min. Thus, it is feasible to
process recorded data between passes.

A minimum peak-hypothesis SNR (typically 15 dB) is required. Below this threshold, the FHT reports the
complex signal at the nominal frequency for reacquisition, which is usually noise. Phase is reset to zero. In
real-world applications, below threshold data are flagged as unusable. In effect, the FHT tracker makes a
distinction between loss of signal and rapid phase variations as the signal approaches the front-end noise
level. Although the excised reports have no cycle slips, the starting phase is reset to zero. In this situation,
the unknown starting phase of reinitiated data segments often can be partially recovered by adjusting the
segment offsets for extrapolated continuity.

Appendix A: Circular Orbit

�̇� = 2𝜋∕Tp, (A1)

where Tp is the orbital period. The orbital velocity at height H is

vp = �̇�
(

RE + H
)
, (A2)

where RE is the Earth radius. The following formulae, respectively, define the satellite (at height Hs) and
penetration point (at height Hp) positions in Earth-centered coordinates:

X =
(

RE + Hs

)
sin(�̇�) (A3)

Z =
(

RE + Hs

)
cos(�̇�) (A4)

XP =
(

RE + HP

)
sin(�̇�t) (A5)

ZP =
(

RE + HP

)
cos(�̇�t). (A6)

For a receiver at X = 0 and Z = RE , the elevation angle to the satellite is

𝜑 = arctan
((

Z − RE

)
∕X

)
(A7)

= arctan

((
1 + Hs∕RE

)
cos(�̇�t) − 1(

1 + Hs∕RE

)
sin(𝜔t+)

)
. (A8)

The satellite is visible for positive elevation angles

||tvis
||> arccos

(
1∕

(
1 + H∕RE

))
∕�̇�. (A9)

The range and range rate are readily computed as

r∕RE =
√(

1 + H∕RE

)2 − 2
(

1 + H∕RE

)
cos(�̇�t) + 1, (A10)
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and

ṙ∕RE =
(

1 + H∕RE

)
sin(�̇�t)�̇�√(

1 + H∕RE

)2 − 2
(

1 + H∕RE

)
cos(�̇�t) + 1

. (A11)

The great circle angle to the satellite is

𝜃e = ⋅𝜔t. (A12)

The angle to the penetration point, its cosine, and secant are

𝜃p = arctan
(

sin 𝜃e

1 + Hp∕RE − cos 𝜃e

)
(A13)

cos 𝜃p =
1 + Hp∕RE − cos 𝜃e√(

1 + Hp∕RE

)2 − 2
(

1 + Hp∕RE

)
cos 𝜃e + 1

(A14)

sec 𝜃p =

√(
1 + Hp∕RE

)2 − 2
(

1 + Hp∕RE

)
cos 𝜃e + 1(

1 + Hp∕RE

)
− cos 𝜃e

. (A15)

The TEC Doppler shift requires the derivatives

d
dt

sec 𝜃p = sec 𝜃p tan 𝜃p�̇�p (A16)

and

�̇�p =
1 − cos 𝜃e

(
1 + Hp∕RE

)
(

1 + Hp∕RE

)2 − 2 cos 𝜃e

(
1 + Hp∕RE

)
+ 1

�̇�. (A17)
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