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Abstract12

Stochastic ionospheric structure is characterized by three-dimensional spectral density13

functions (SDFs) constrained to reproduce the known structure correlation along mag-14

netic field lines. In-situ diagnostics are formally one-dimensional scans of the structure.15

Thus, characterization of ionospheric structure starts with spectral analysis of one-dimensional16

time series. Theoretical models provide analytic relations between measured one-dimensional17

SDFs and the higher dimensional SDFs that characterize the structure. Unknown SDF18

parameters are estimated by model-fitting procedures, which will be referred to in this19

paper collectively as irregularity parameter estimation (IPE).20

If the diagnostic SDF has the form Φ(q) = Csq
−η, where q is the spatial frequency,21

the logarithmic transformation log(Φ(q)) = log(Cs)−η log(q) can be exploited to esti-22

mate log(Cs) and η. In this paper simulations are used to investigate LLE estimates of23

diagnostic single-component and two-component power-law SDFs. There is a known Cs24

bias and a more troublesome correlation between the log(Cs) and η estimates, which is25

exaggerated by unconstrained wavelet-based estimates. We found that this intrinsic prop-26

erty of LLE estimators completely explains a similar correlation long observed in both27

in-situ and radio propagation ionospheric diagnostic measurements.28

More recent results have exploited the fact that the probability distribution func-29

tion (PDF) of periodograms about the true mean is asymptotically χD. The conditional30

PDF is used to construct MLE estimates. The MLE estimates eliminate the bias, but31

the correlation persists. Recognizing that correlation between turbulent strength spec-32

tral index estimates is an intrinsic measurement property, error minimization is partic-33

ularly important. A modified MLE procedure is presented that provides robust initia-34

tion and good error performance.35

1 Introduction36

The principal metric for characterizing ionospheric structure is the spectral den-37

sity function (SDF), which is formally the expectation of the intensity of a spatial Fourier38

decomposition of the structure. Ionospheric structure is highly elongated along the di-39

rection of the earth’s magnetic field, whereby stochastic variation is manifest only in planes40

that intercept field lines. Structure models project the two-dimensional structure onto41

measurable one-dimensional SDFs. Model development has been stimulated by recent42

physics-based high-resolution equatorial plasma bubble (EPS) simulations Yokoyama [2017]43

and by new propagation-theory results Carrano and Rino [2016]. The EPB simulations44

can be used to measure the intermediate scale structure directly. The propagation-theory45

results relate measured one-dimensional scintillation intensity SDFs to the path-integrated46

SDFs that generated the scintillation. In effect, the propagation diagnostics can be re-47

lated directly to equivalent path-integrated structure models.48

Model-data comparisons require conversions of measurement-specific time series49

to scan distance. Knowledge of the probe motion and structure drift is sufficient for in-50

situ diagnostics. Knowledge of the location and motion of a reference coordinate system51

are necessary for propagation diagnostics in addition to the structure drift. Either way,52

the scaling and geometric transformations can be absorbed in an effective velocity such53

that54

y(t) = veff (t− t0), (1)

Consequently, only spectral analysis of spatially varying data segments need be consid-55

ered.56

Finally, by hypothesizing a parameterized analytic SDF form, the structure clas-57

sification problem is reduced to estimating a small number of defining parameters. The58
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two-component power-law model59

Φ (q) = Cs

{
q−η1 for q ≤ q0
qη2−η10 q−η2for q > q0

, (2)

where q is the spatial wavenumber in radians per meter, is sufficient for characterizing60

intermediate-scale ionospheric structure. A two-component SDF functionally similar to61

(2) was introduced by Carrano and Rino [2016] to characterize the path-integrated phase62

SDF, which is not directly measurable. A compact theory was developed to predict the63

scintillation intensity SDF as a function of the path-integrated phase parameters. Here64

we consider direct estimation of power-law parameters. The notation Cs and ηn is used65

to distinguish the in-situ parameters from the propagation diagnostic parameters Cp and66

pn.67

If the theoretical SDF is a multi-component power-law, the simplest approach to68

power-law SDF parameter estimation exploits logarithmic transformation of the spec-69

tral estimates. The procedure was used to analyze in-situ data from the C/NOFS satel-70

lite Rino et al. [2016]. Wavelet-based estimators were used in part to identify homoge-71

neous data segments, but also because wavelet estimators are well matched to power-72

law processes. The following correlation between the estimated η1 and Cs and param-73

eters was noted in the C/NOFS study:74

η1 = −0.02(CsdB − C0dB). (3)

The notation CsdB means 10 log10(Cs). The CsdB− η1 correlation has also been ob-75

served in propagation diagnostics Rino et al. [1981], Livingston et al. [1981].76

Recent studies of single-power-law LLE and MLE parameter estimation by Vaughan77

[2005], Vaughan [2010] and Barret and Vaughan [2011] show that the correlation rep-78

resented by (3) is an intrinsic property of power-law parameter estimation. Moreover,79

although wavelet-based estimators are more accurate than periodogram estimators at80

higher frequencies, errors rapidly build up in the low-frequency range. The frequency de-81

pendence of the wavelet error distribution exaggerates the CsdB−η1 correlation. In light82

of these findings this paper reviews and extends power-law parameter estimation pro-83

cedures.84

2 Spectral Analysis Theory Summary85

Estimating parameters that define the SDF of a power-law processes begins with86

an SDF estimate. Periodogram-based spectral estimation is well established for this pur-87

pose. The periodogram of the data sequence, Fk = F (k∆y), for k = 0, 1, · · · , N − 1 is88

defined as89

Pn =
1

N

∣∣∣F̂n∣∣∣2 , (4)

where90

F̂n =

N−1∑
k=0

Fk exp {−ink/N} (5)

is the discrete Fourier transform. From the relation91

1

N

N−1∑
k=0

F 2
k =

1

N

N−1∑
n=0

Pn, (6)

it follows that92

1

N

N−1∑
k=0

〈
F 2
k

〉
=

∫
Φ(q)

dq

2π
, (7)

where the angle brackets denote expectation, and Φ(q) is the SDF.93
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A standard procedure is used to generate realizations of Fk, namely94

Fk =

N−1∑
n=0

√
Φ(n∆q)∆q/ (2π)ζn exp {ink/N} , (8)

where∆q = 2π/(N∆y), and ζn is a zero mean Gaussian process with the white-noise95

property96

〈ζnζ ′n〉 =

{
1 for n = n
0 for n 6= n′

(9)

Substituting (8) into (5) it follows that97 〈
|F̂n|2

〉
= Φ(n∆q)∆q/ (2π) , (10)

and from (7)98

〈Pn〉N∆q/2π = Φ(n∆q), (11)

whereby a properly scaled periodogram is an unbiased estimate of the SDF.99

Now consider the average100

y =
1

M

M∑
l=1

Φ̂(l)
n , (12)

where Φ̂
(l)
n is a scaled periodogram estimate of a process with SDF Φn. By construction,101

Fk and F̂n are Gaussian random processes. For Gaussian random processes the summa-102

tion of M intensity measurements has a known distribution:103

P (y) =
yM−1 exp {−y/ (Φn/M)}

(Φn/M)
M

Γ (M)
. (13)

As described in Appourchaux [2003], the complex process that generates the realizations104

has 2 degrees of freedom per realization, which is accommodated in (13). From (13) the105

moments,〈Im〉, and the fractional moments, Fm = 〈Im〉 / 〈I〉m, can be computed:106

〈Im〉 =
(Φn/M)

m
Γ(M +m)

Γ (M)
(14)

Fm = Γ(M +m)/Γ (M) /Mm (15)

The first and second moments, < y >= Φn and
√
〈y2〉− < y >2 = Φn/

√
M , com-107

pletely define the statistics of Φ̂n in terms of Φn. The fractional moments for M = 1108

reduce to Fm = m!.109

In the following analysis ideal realizations will be used. However, the statistics of110

real data deviate significantly from Gaussian. Even so, experience and analysis, e. g. Kokoszka111

and Mikoschb [2000], show that the Gaussian results apply more broadly. Figure 1 is a112

plot of the PDF of y/Φ, which represents the scaled periodogram error relative to the113

mean. The Gaussian distribution, which is the large-M limit, is overlaid in red. The plot114

shows that for M < 10 there is a significant difference between the most probable value,115

denoted by the red pentagram, and unity mean. Averaging the periodogram estimates116

brings the most probable value closer to the desired true mean.117
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Figure 1. Probability distribution of y/Φn (blue) with gaussian limiting form overlaid (red).118

–5–



Confidential manuscript submitted to Radio Science

3 Wavelet-Based Spectral Estimation119

A complete treatment of wavelets can be found in the text books by Mallat Mal-120

lat [2009] or Strang and Borre [1997]. Wavelets measure structure scale, s, as a func-121

tion of the position within a segment as opposed to the Fourier domain frequency, (2π/s),122

which applies to the entire segment. The limitations of position-dependent scale mea-123

surements are manifest in the wavelet transformations. The continuous wavelet trans-124

formation (CWT)is defined as125

Fw(s, y) =
∫∞
−∞ F (y′) 1√

s
w(y

′−y
s ) dy′

=
∫∞
−∞ sF̂ (q)ŵ (sq) exp {iqy} dq

2π . (16)

The Fourier-transform relation is typically used to evaluate the CWT numerically. Wavelets126

have the following defining properties:127

w(s) = 0 for |s| > 1/2 (17)∫ 1/2

−1/2
w(s)ds = 0 (18)∫ 1/2

−1/2
|w(s)|2 ds = 1 (19)∫ ∞

−∞
|ŵ(q)|2 dq

q
< ∞ (20)

The final property ensures that the CWT is invertible. At each wavelet scale the CWT128

is a formally a convolution with a wavelet with finite support over the supported scale129

range.130

The discrete wavelet transform (DWT) extracts only octave-spaced wavelet scale131

estimates at s = ∆y2j for j = 1, 2, ..., J where J is the largest power of 2 that equals132

or exceeds N , i. e. 2J ≥ N . Each DWT wavelet is applied to the even number of sam-133

ples that span the wavelet. The wavelet scale is defined by j with j = 1 correspond-134

ing to largest scale, which is usually discarded. The number of wavelet contributions varies135

with the scale index, j. For j = 2, n = 1 and 2 corresponding to the centers of two136

half segments. The smallest wavelet scale contributes N/2 centered samples. A discrete137

wavelet contribution requires a minimum of two data samples. The spatial frequency as-138

sociated with the structure scale, s, is q = 2π/s. The DWT,139

djn =
1

2

N−1∑
k=0

Fk
1√

2j−1
w((k − n) /2j−1), (21)

can be evaluated with the same efficiency as the DFT by using an elegant multi-filtering140

operation described in the cited text book references.141

Because the wavelet transform is a linear operation applied to a zero-mean Gaus-142

sian process, djn, like its periodogram counterpart, is a zero-mean Gaussian process. More-143

over, from the spectral domain form of the CWT it can be shown that144

〈Fw(s, y)Fw(s, y + ∆y)〉 =

∫ ∞
−∞

Φ (q) |sŵ (sq)|2 exp {iq∆y} dq
2π
. (22)

From the statistical homogeneity assumption it follows that
〈∣∣djn∣∣2〉 is independent of145

n. The wavelet scale spectrum, as introduced by Hudgins Hudgins et al. [1993], is a sum-146

mation over the contributing wavelet estimates at each scale, formally147

Sj =
1

2j−1

2j−1∑
n=1

∣∣djn∣∣2 . (23)
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Upon substituting (2) into (22), it follows that148 〈
|dj |2

〉
= Cs

{
B1( η1, q0)s−η1 for s ≤ q0
B2( η2, q0)qη2−η10 s−η2 for s > q0

, (24)

where149

B1( η1, q0) = 2

∫ q0

0

u−η1 |ŵ (u)|2 du

2π
, (25)

and150

B2( η2, q0) = 2

∫ ∞
q0

u−η2 |ŵ (u)|2 du

2π
. (26)

We will show with examples that B1( η1, q0) ∼ B2( η1, q0) ∼ 1, which implies151

that
〈
|Sj |2

〉
= Φj . We show that the variance of the wavelet scale spectrum estimates152

decrease with increasing spatial frequency, but the statistics are distinctly different from153

the χD distribution that applies to sums of independent spectral estimates. Unfortunately,154

we have no characterization of the wavelet scale spectra PDF.155

4 Realization Examples156

Realizations defined by (8) have been generated with N = 4096 samples spanning157

100 km. The sample interval, ∆y = 24.41 m, and the 100-km extent define the posi-158

tive spatial frequency range from ∆q = 2π/105 to the Nyquist frequency q = π/∆y.159

The sampling and spatial extent were chosen to be representative of ionospheric diag-160

nostic measurements. Because realizations generated by (8) are zero-mean and periodic,161

there are no end-point discontinuities that would otherwise introduce side-lobe contam-162

ination.163

Periodogram estimates defined by (4) and scale-spectrum estimates defined by (23)164

were generated from 1000 realizations for an SDF with η = 2 and for a two-component165

SDF with η1 = 1.5, η2 = 2.5, and q0 = 2π/3000. A constant value Cs = 10 was used166

for all the realizations. The constant value of Cs is not restrictive because realizations167

can be scaled without changing the underlying statistics. For the DWT computation a168

folded replica of the realization is used to eliminate discontinuities in the last contribut-169

ing wavelet. Any edge contamination is confined to the wavelet contributing to the largest170

segment distance.171

Figure 2 summarizes the scaled periodogram and scale-spectrum estimates for the172

two-component realizations. The overlaid cyan curves in the upper frame are the 2047173

scaled periodogram estimates spanning the resolved spatial frequency range. The over-174

laid cyan curves in the lower frame are 11 of the 12 octave-spaced scaled scale-spectra175

estimates, starting with the second resolved scale. The solid red curves are the defining176

theoretical SDFs. There appears to be less periodogram fluctuation about the mean in177

the low-frequency range, which is a consequence of the decreasing number of contribut-178

ing logarithmically-spaced frequency samples. We will show that the periodogram fluc-179

tuation statistics about the mean are identical at all frequencies. This is in sharp con-180

trast to the wavelet scale spectrum estimates, which have very small variation at the higher181

frequencies. The scale spectrum error progressively increases to complete uncertainty at182

the lowest-resolved spatial frequency.183

To explore the statistics of the periodogram and scale-spectra SDF estimates, 100-186

realization averages were used to compute the means and the second and third fractional187

moments. The results are summarized in Figures 3 and 4. Because the periodogram mea-188

sures are frequency independent, only the average values over the frequency ranges are189

shown together with the expected theoretical values in predicted by (15) in parenthe-190

ses. As already noted, there is no complementary PDF model for the wavelet scale spec-191

tra. The measured second and third fractional moments are listed next to the average192
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Figure 2. Periodogram upper frame (cyan) and scale spectrum lower frame (cyan) estimates

from two-component power law SDF realizations. The solid red curves show the initiating SDF.

184

185

scale spectra samples plotted as red circles. The wavelet fractional moments decrease193

rapidly to near unity with increasing frequency, which quantifies the observation that194

wavelet scale spectra estimates are much more certain at the higher frequencies. How-195

ever, the moments differ significantly from χD where D = 2Nj , which would be expected196

for averaged independent spectral estimates. All the measured moments are nearly iden-197

tical for the single and two-component realizations.198

–8–



Confidential manuscript submitted to Radio Science

Figure 3. Summary statistics for single power law with η = 2.199

Figure 4. Summary statistics for two-component power law.200

5 Logarithmic Transformation201

Because of the linear dependence of the logarithm of power-law segments on the202

logarithm of frequency, it is natural to base estimates of the defining power-law param-203

eters on logarithmic transformations of spectral estimators. Log linear least-squares es-204

timation (LSE) has been analyzed and reported in a paper by Vaughan [2005]. The blue205

curve in Figure 5 is the average of 100 estimates of log10

(
Φ̂n

)
versus log10(q/(2π)) for206

the η = 2 SDF. Aside from the -2.48 dB bias, which can be predicted and removed as207

shown by Vaughan [2005], the results suggest that LSE should recover the Cs and η pa-208

rameters. The wavelet-scale estimates (red circles) show negligible bias at large frequen-209

cies, with a progressive increase to a larger bias than the log periodogram estimate at210

the lowest frequency.211

Figure 6 summarizes three sets of LSE estimates. The blue circles are derived from213

periodogram LSE estimates, which are in agreement with Vaughan [2005], although in214

Figure 6 the bias has not been removed. The cyan circles are derived from scale-spectra215
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Figure 5. Mean of logarithm of spectral estimates for η = 2.212

estimates over the full scale range. The scale-spectra results have a smaller bias, but larger216

uncertainty. However, knowing that the scale spectra uncertainty increases with decreas-217

ing frequency, the highly uncertain estimates can be eliminated. The red circles show218

the scale-spectra results derived from scale-spectra estimates constrained to the more219

certain large-scale range. The constrained LSE results with scale spectra are compara-220

ble to the periodogram estimates.221

The distinguishing characteristic of all the LSE estimators is the correlation of the222

CsdB and η estimates. Formally, the uncertainty ellipse is rotated and displaced from223

its the true value. The blue line is the least-squares fit to the unconstrained periodogram224

estimates. The log-linear correlation perfectly reproduces the correlation found in the225

C/NOFS data reported in Rino et al. [2016] and other LSE-based estimates. This shows226

that the ubiquitous coupling regularly observed in LSE estimates is a measurement ar-227

tifact, not a characteristic of the structure generation process.228

If the measurement objective is to estimate the defining power-law parameters, it229

is necessary to have enough measurements to identify the uncertainty ellipse, whereby230

the center can be estimated and any known bias corrected. However, if that many in-231

dependent samples are available, reducing the uncertainty before applying LSE is more232

effective. This is illustrated in Figure 7. The upper frame repeats the periodogram re-233

sults shown in Figure 6 for reference. The second and third frames show the improve-234

ments realized with LSE M = 2 and M = 10 pre-averaged periodogram estimates.235

Averaging scale-spectra estimates does not improve the results, evidently because the236

low-frequency errors are not reduced significantly.237

The larger challenge is accommodating two-component power law processes, which238

introduces two-more unknowns. The scheme that was used to analyze the C/NOFS data239

reported in Rino et al. [2016] applied two LSE fits to partitions with increasing break240

points. The smallest overall LSE was selected. The problem with this approach, in ret-241

rospect, is that it captures and exaggerates the CsdB-η correlation.242
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Figure 6. Scatter diagrams of power-law log least-squares parameter estimates from peri-

odogram (blue) and scale spectra estimates for a single-component η = 2 power law uncon-

strained (cyan) and constrained (red). The solid line is a leas-squares fit to the scale spectra

estimates.

243

244

245

246

Figure 7. Scatter diagrams of power-law parameters derived with LSE applied to M = 1),

(non-averaged)M = 2 and M = 10 pre-averaged periodogram estimates.

247

248
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6 Irregularity Parameter Estimation249

IPE was introduced in Carrano and Rino [2016] to estimate parameters that char-250

acterize intensity scintillation SDFs. The power-law parameters characterize path-integrated251

phase, which cannot be measured directly. However, IPE requires only an analytic rep-252

resentation of the expectation of the measured SDF. The parameters that define the ex-253

pectation SDF, Φ, are adjusted to mach an SDF estimate, Φ̂. The LLE goodness-of-fit254

measure255

ε2(Φ̂n|Φn) =
1

N

∑
n

(
log Φ̂n − log Φn

)2
, (27)

requires no knowledge of the Φ̂n statistics, and it has been used successfully for estimat-256

ing intensity SDF parameters. This section will consider a more robust maximum-likelihood-257

procedure introduced by Carrano et al. [2017].258

Rewriting (13) as259

P (Φ̂(M)
n |Φn) =

[
M(Φ̂(M)

n )−M log(M Φ̂(M)
n /Φn)

+ log(Φ̂(M)
n ) + log Γ(M)

]
, (28)

the probability of observing a sequence of independent SDF estimates is
∏
n
P (Φ̂

(M)
n |Φn).260

Logarithm transformation converts the product to the summation:261

Λ(Φ̂(M)
n |Φn) = − log

N∏
n=1

P (Φ̂(M)
n |Φn)

=

N∑
n=1

[
M(Φ̂(M)

n )−M log(M Φ̂(M)
n /Φn)

+ log(Φ̂(M)
n ) + log Γ(M)

]
. (29)

A maximum likelihood estimate (MLE) is obtained by adjusting the defining Φn param-262

eters to minimize (29), which maximizes the likelihood that Φn generated the realiza-263

tion.264

For a single-component power law, the parameters that minimize (29) can be com-265

puted analytically, as demonstrated by Vaughan [2010] and Barret and Vaughan [2011].266

Moreover, the statistical theory establishes bounds on the covariance matrix of the MLE267

parameter estimates. Indeed, covariance calculations by Barret and Vaughan [2011] con-268

firm the Cs-η correlation, who also introduced the Nelder-Mead algorithm Olsen and Nelsen269

[1975] for minimizing (29). The Nelder-Mead algorithm requires initiation with param-270

eters close to the true minimum. Moreover, convergence is sensitive to the number of pa-271

rameters being estimated and the characteristics of the multi-dimensional object func-272

tion being minimized. We follow Barret’s procedure, but note that one has some lati-273

tude in constructing the object function. For example, the minimization can vary either274

Cs or the logarithm of Cs. Given the log-linear relation between the turbulent strength275

and the power-law index exploited in (27), one might expect better convergence by vary-276

ing CdB.277

The difference between the log-likelihood prior to minimization and the log-likelihood278

for the true SDF is introduced as a measure of log-likelihood uncertainty:279

∆Λ = Λ(Φ̂(M)
n |ΦTn )− Λ(ΦTn |ΦTn ), (30)

where the T superscript indicates the true realization SDF . Figure 8 shows a compar-280

ison of ∆Λ histograms for the single-power-law realizations with M = 1 and M = 2.281

Because Λ is minimized for each Φ̂
(M)
n estimate, the negative values in the right frame282
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of Figure 8 have no particular significance. Consistent with Figure 1, Figure 8 shows that283

averaging as few as two SDF estimates significantly reduces the ∆Λ variation. The ∆Λ284

variation for two-component realizations shows identical behavior. With regard to the285

Nelder-Mead algorithm, Figure 9, compares the cumulative distributions of the number286

of iterations to Nelder-Mead convergence with varying Cs and CsdB. For these calcu-287

lations the Matlab implementation of the Nelder-Mead simplex algorithm was used.288

Figure 8. Offset ∆LLE histograms for single power law realizations with M = 1 (upper

frame) and M = 2 (lower frame).

289

290

Figure 9. Comparison of Nelder-Mead iterations to convergence with varying Cs and CsdB.291

Figure 10 shows the MLE parameters for a single power law with M = 1. The292

Nelder-Mead search was initiated with the LLE estimate. We see that upon compari-293

son to the LLE results, MLE removes the Cs bias and significantly reduces statistical294

uncertainty. The right frame shows that the Cs-η correlation persists, although the cor-295

relation is imperceptible in the summary results. These results are in complete agree-296

ment with results reported by Vaughan [2010] and Barret and Vaughan [2011]. For the297

single-power law realization processes with no averaging minimizing the object function298
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by varying Cs or CsdB has little effect on the uncertainty and Cs−η correlation. As299

an overall check on performance the Nelder-Mead search was initiated with the true pa-300

rameter values. The differences, including convergence are imperceptible.301

Figure 10. Left frames show MLE parameters for single power-law M = 1. Right frame show

η − CsdB correlation.

302

303

Two-component power-law estimation requires four-parameter initiation. To this304

end, a mid-frequency q0 estimate is selected, which partitions Φ̂
(M)
n into two contiguous305

sets. Log-linear least-squares estimation is applied to each segment, with a final adjust-306

ment to enforce equality at the break scale. For the two-component power-law realiza-307

tions there is a significant improvement in both parameter error reduction and Nelder-308

Mead convergence when the search is performed on CsdB. Figure 11 shows the estimated309

parameters for M = 1. As with the single power-law results, the same end result is ob-310

tained when the search is initiated with the true parameters. The η1, η2, and 2π/q0-km311

parameters are unbiased.312

The Cs parameter estimates are more variable. However, the mean of the estimates313

is the correct value. To explore this further, Figure 12 shows a histogram of the Cs es-314

timates (blue) with the exponential PDF overlaid in read. Evidently the Cs fluctuations315

are capturing the exponential distribution of the periodogram SDF estimate. Figure 13316

shows a scatter diagram of the η1,2 parameter estimates versus CsdB. The CsdB−η1317

correlation persists. However, as with the single-power-law realizations, the η1−CsdB318

correlation is imperceptible in the individual parameter fluctuations. There is no cor-319

relation between CsdB and the η2 parameter estimates. Significant improvements are320

realized with averaging.321
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Figure 11. MLE parameters for M = 1 two-component power-law realizations.322

Figure 12. Two-component Cs parameter histogram (blue) with exponential distribution

overlaid (red).

323

324

Figure 13. MLE η1,2 versus CsdB scatter diagrams for two-component power-law parameters.325
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7 Discussion and Summary326

This paper reviewed LSE and MLE power-law spectra parameter estimation us-327

ing both periodogram and wavelet-based spectral estimators. All of the procedures gen-328

erate correlated turbulent strength and large-scale spectral index parameter estimates.329

The correlation has been noted in in-situ and remote ionospheric diagnostics, but incor-330

rectly attributed to the structuring process. MLE estimation removes biases and signif-331

icantly reduces statistical errors. Correlation between the CsdB and the large-scale in-332

dex persists. However, the MLE estimate modified to adjust CsdB rather than Cs re-333

duces the Cs and η1 errors to negligible levels. Even so, correlation can be detected but334

recognized as intrinsic to parameter estimation.335

The fact that using wavelet-scale spectra exaggerates the Cs-η1 coupling was not336

expected. It is well know that the dyadic wavelet scale separation is well matched to the337

continuous fractal property of power-law processes. Our results verify this property, but338

for parameter estimation scale independence of the error statistics is more important than339

scale-selective error reduction. It the absence of a PDF model for wavelet scale spectra340

MLE estimation intractable. However, we note that most wavelet-based structure anal-341

ysis is based on spatial-domain structure-functions as opposed to spectral-domain mea-342

sures Peter and Rangarajan [2008].343
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