
A Docent�s Farewell to Charles Babbage�s
Di¤erence Engine No. 2

Charles L. Rino
Mountain View Computer History Museum Docent

crino@comcast.net
http://chuckrino.com/wordpress/

Abstract

An exact replica of a di¤erence engine constructed 152 years after it
was designed by the 19th century mathematician Charles Babbage was
operated at the Mountain View, California Computer History Museum,
courtesy of Naythan Myhrvold, from April 2008 until February 2016. I
had the good fortune to become a Computer History Museum docent in
2011. Shortly thereafter I joined the team of operators and presenters
who demonstrated the machine for thousands of museum visitors. This
paper is a summary of my DE2 docent experience and a fond farewell to
DE2.

1 Introduction

A reconstruction of Charles Babbage�s Di¤erence Engine No. 2 (DE2) was
on loan to the Mountain View, California Computer History Museum (CHM)
from April 9, 2008 through January 2016. The Charles Babbage story and
how the �rst DE2 came to be constructed more than 150 years after it was
designed can be found in Doron Swade�s book, The Cogwheel Brain, [1] and
his paper, The Construction of Charles Babbage�s Di¤erence Engine No. 2,
[2]. Brie�y, evolving industrial-age commerce created a demand for accurate
tables of mathematical functions. Mathematicians knew how to perform the
computations [3], but manual execution was time consuming and translating the
results to print was error prone. In a popular anecdote, Charles Babbage was
comparing tables of functions with his astronomer colleague and lifelong friend
John Hershel. They found numerous discrepancies, which caused Babbage to
exclaim, �I wish to God that these calculations had been executed by steam.�
Executed by steam was a metaphor for automation.
In 1823 Babbage designed a di¤erence engine that could compute and gen-

erate stereographs for printing error-free tables of mathematical functions. He
petitioned the British government and received a large amount of funding to
build his �rst design, Di¤erence Engine No. 1. However, after nearly ten year�s

1

work only one third of the machine�s 24,000 parts and a working fragment had
been constructed. In an attempt to accelerate the e¤ort Babbage got into a
dispute with his machinist, Joseph Clement. The project came to an abrupt
end when Clement dismissed his workers and quit.
Eleven years into the e¤ort with only the beautiful fragment in hand, Bab-

bage turned his full attention to the design of an analytic engine capable of
general-purpose computation under punched-card control. He is most famous
for his analytic engine design, which foreshadowed modern digital computers.
The design for his second calculating engine, Di¤erence Engine No. 2 (DE2),
used re�nements developed for the analytic engine. He petitioned the British
government again in 1848 with and o¤er to ful�ll his earlier commitment, but
the o¤er was declined. Charles Babbage died in 1871 bitterly disappointed that
his designs were never realized. He made the prophetic remark �Another age
must be the judge.�
The London Science Museum inherited Babbage�s designs, papers, the beau-

tiful fragment, and other artifacts collected by his youngest son, Henry. The
collection resided in the London Museum for over a century. In 1985 Doron
Swade, a new curator, started a project to construct a realization of DE2 from
Babbage�s plans using materials and procedures that could have been imple-
mented in Babbage�s lifetime. Alan Bromley, an an Australian engineer, sub-
mited a proposal at about the same time.
Construction of the computation section of DE2 was completed just in time

for a demonstration in 1991 to celebrate the bicentennial of Babbage�s birth.
The un�nished DE2 came to the attention of Microsoft�s former chief technical
o¢ cer, Nathan Myhrvold. He agreed to fund the completion of DE2 provided
that the London Science Museum build a second complete replica for his per-
sonal use. Upon its completion in 2008 Myhrvold generously lent his DE2
replica to the Mountain View Computer History Museum where thousands of
museum visitors saw the machine operate and learned its fascinating story. It
was not uncommon to have upwards of 100 visitors viewing the demonstrations
with audible gasps as they viewed the carry operations for the �rst time. In
early February, 2016 DE2 in perfect working order was carefully crated to com-
plete its journey to Seattle, Washington where it now resides in the lobby of
Nathan Myhrvold�s company, Intellectual Ventures.
For the cadre of Babbage enthusiasts, the DE2 experience was exhilarating.

I had the good fortune to become a CHM docent in 2011 when the main exhi-
bition �Revolution, The First 2000 Years of Computing�opened to the public.
Demonstrations of DE2 were already underway, but the Babbage team of pre-
senters, operators, and the well-healed maintenance crew was being expanded.
I joined the Babbage team in 2012. The DE2 team was unknowingly partic-
ipating in a living historical discovery of what Charles Babbage would have
encountered had DE2 been built in his lifetime. Our experience through the
sad farewell party January 11, 2016 is captured in photo-documented html on
Ed Thalen�s website 1 .

1http://ed-thelen.org/BabInstCHM/index.html

2

What follows is a sketch of a docent presentation. One of our docents attired
himself in period dress and lectured from a small table as Charles Babbage might
have done. Another docent wore the cap and atire of Joseph Clement while
operating DE2, which might be ironic. On one occasion a large bug was found
in the oil pan at the base of the machine. Although the bug didn�t get into the
gears and disrupt the DE2 operation, it was dutifully pasted into the log book
as Grace Hopper had done with a moth (bug) that did disrupt the operation of
the Mark II relay computer in the early 1940s.
Our docent presentations included a variant of the historical sketch, usu-

ally embellished with amusing Babbage lore, such as his letter to Alford Lord
Tennyson:

Sir:
In your otherwise beautiful poem "The Vision of Sin" there is a

verse which reads �"Every moment dies a man, Every moment one
is born." It must be manifest that if this were true, the population
of the world would be at a standstill. In truth, the rate of birth is
slightly in excess of that of death. I would suggest that in the next
edition of your poem you have it read �"Every moment dies a man,
Every moment 1 1/16 is born." The actual �gure is so long I cannot
get it onto a line, but I believe the �gure 1 1/16 will be su¢ ciently
accurate for poetry.
I am, Sir, yours, etc.,
Charles Babbage

I �nd it hard to believe this letter was meant other than as a tongue-in-cheek
remark. After the historical introduction docents explained, with varying
amounts of detail, how the machine generates and prints error-free tables of
mathematical functions. As already noted, the highlight of the presentation
was seeing the machine in operation. A chalk-board sidebar explained how the
method of di¤erences reduces the serial evaluation of a polynomial to a sequence
of additions. The name di¤erence engine comes from the method of di¤erences.
Figure 1 shows DE2 ready for a demonstration. The entire apparatus weighs

5 metric tons. A heavy supporting frame is hidden under the platform. The
left-hand side of the machine generates page stereographs that would be �lled
with molten lead for type setting and subsequent printing. A crank and bevel-
geared rotation shaft can be seen on the right-hand side with a hand crank that
powers the engine through a 4:1 reduction gear. The central upper frame, the
computation section, contains eight columns of 31 bronze �gure wheels. The
position of each �gure wheel represents a digit from 0 to 9. Subgroups of the
31-digit numbers represented by each column can be isolated. This feature is
used to advantage to maintain a cycle count.
In more modern terminology the 31-wheel columns are registers. During

a computation cycle (one full rotation of the main shaft) the contents of each
register is added to the left adjacent register starting at the right-most register.
The replaced contents of the �rst register is the new result. Babbage imple-
mented a more e¢ cient scheme, which would be recognized today as pipelining,

3

Figure 1: Babbage Di¤erence 2 Working Replica at Mountain View, Computer
History Museum.

to perform the odd-to-even additions simultaneously followed by simultaneous
even-to-odd additions.
Mechanical addition was challenging to 19th century mathematicians. How

to manage additions that required a carry was the main problem. Babbage�s
solution was elegant. You �rst add all the number wheels simultaneously, but
you keep track of the wheels that generate a carry. A second serial operation
starting with the lowest wheel adds one to the wheel above each wheel with a
set carry �ag, but the carry operation itself can generate a carry. This was
accommodated by performing the carry addition with carry detection active.
The mechanical operation of DE2 and the underlying operation principle

is beautifully illustrated in 5 You Tube videos made with advanced CAD and
rendering by Mike Hilton 2 . The �rst video demonstrates the method of �-
nite di¤erences, which reduces the sequential evaluation of an approximating
polynomial to a series of additions. Our initial DE2 demonstrations used the
polynomial

y(x) = 41 + 4x+ 7x2 + x3 + 5x4 + 9x5 + 2x6 + 8x7; (1)

which was evaluated at x = 0; 1; 2; � � � . The value of x was indicated by a count
2https://www.youtube.com/playlist?list=PLSOxgHhh6-o8ZuhRpL9ds8wM4doxauru-

4

maintained with the �rst four digits in the results column. The 27-digit value of
the polynomial represented by (1) increases monotonically. Consequently, pro-
gressively more of the DE2 �gure wheels become active. As operators cranked
on, small misalignments caused the machine to jam. The machine was de-
signed to jam rather than propagate an incorrect answer, but occasionally the
jams bent or broke delicate carry levers. Under Tim Robinson�s leadership,
numerous adjustments were made that signi�cantly improved DE2 reliability
and reduced operator stress. Operating the machine when a jam broke one or
more delicate carry levers was not a pleasant experience.
Attempts to demonstrate 7-digit error-free tabulation started early in 2011,

but stress on some damaged components caused a retreat to the polynomial
demonstration. By August, 2013 the DE2 operation with some replaced parts
was reliable enough to demonstrate 7-digit, error-free tabular computation of
base-10 logarithms.
Details of why the method of di¤erences works, how to set up the pipelining

operation, and how to determine polynomial coe¢ cients that approximate a
function with a speci�ed accuracy had to be ferreted out by the docents. As
we pursued these learning challenges it was natural to engage our own PCs
to try out some examples. It was easy enough to evaluate (1), generate a
table of di¤erences, and follow the prescription for adjusting the di¤erences to
support pipeline evaluation 3 . With the starting di¤erences initialized you just
add the odd di¤erences to the even di¤erences and then add the modi�ed even
di¤erences to the previously used odd di¤erences. Things start out well, but
after a hundred cycles or so the PC and DE2 values begin to di¤er4 . The DE2
answers are correct. The problem is accuracy. Standard 64-bit double-precision
additions support only 16 digits.
In the absence of special-purpose software the only way the DE2 values can

be reproduced is by executing the DE2 operations on a PC exactly as Babbage
implemented the operations mechanically. An emulator was developed that
reproduces the exact content of each of the 31-digit registers and the carry lever
settings. As part of docent operating procedures, the beginning and ending
results were checked against a thick tabular listing of the correct results. The
emulator did get used for diagnostic mapping of carry-�ag progressions that
preceded recurrent jams. For a brief period the emulator was used to predict
what came to be called the correct wrong answer when broken carry levers were
bypassed. The DE2 result was not correct, but the result could be calculated.
When the DE2 was operating, the clacking sound of locks that aligned the
number wheels after each addition could be heard throughout the entry area.
In the absence of this welcome familiar sound, a recorded sound track was added
to the emulator. The sound track can be heard in the entry way to the main
CHM exhibition, but it�s largely unrecognized.
When DE2 was set up to generate entries in a table of logarithms, docents

had to adjust their presentations accordingly. Setting up the demonstration

3See Section 2.5.
4See Figure 5.

5

presented analytic challenges. The schemes that Babbage would have used
to generate an approximating polynomial are accessible, but too intricate for
demonstration purposes. So, rather than attempt to reconstruct a scheme
Babbage might have used, Tim Robinson tackled the problem with the aid of the
advanced programming language Mathematica. The least-squares computation
formally amounts to nothing more that solving the system of linear equations
represented by (29). The challenge is you have to do the calculation with 27
digit accuracy. Robinson�s calculation deviates from historical discovery, but
it does demonstrate how far computational resources have come since the �Age
of Automation."5

The following 7th -order polynomial will approximate y(x) = log 10(x) over
the subrange 1 � x � 1:3007 correct to 7 decimal places in steps of 0:0001:

y(x) = 0:0238136826772209364647702x7

�0:223692112913365566257355x6

+0:92528988999927869124053x5

�2:21261150005176405884586x4 (2)

+3:38263438616479181543250x3

+:48698423266308665121107x2

+2:659813209777670302364865x

�1:068263322990745469188367

Even with the polynomial de�ned, it is a demanding exercise to complete the
setup. Following the prescription, 7 consecutive values of the polynomial must
be computed. Since x is a small number, hand calculation would be feasi-
ble as would transforming the di¤erences for pipeline evaluation. The follow-
ing 27-digit integers represent the initiating di¤erences after manipulations for
pipelining:

d0 000130318797007462720037127
d1 000043414250565213313999556
d2 999999995659693203038772886
d3 000000000000867436407448217
d4 999999999999999740943776800
d5 000000000000000000099725904
d6 999999999999999999999958999
d7 000000000000000000000000012

(3)

The integers starting with 9 are tens-complement negative numbers. The in-
tegers multiplied by 10�27 represent the true values. That is, the implicit
decimal point is just ahead of the most signi�cant digit. The computations
were tweaked a bit to generate a nonzero seventh di¤erence. Because Babbage
designed the machine to evaluate seventh-order polynomials, it was felt that
the seventh di¤erence should contribute at least one or two digits, times 10�27.
Docents never tired of passing these tidbits on to CHM visitors.

5See Section 2.7.

6

Figure 2: DE2 docents, operators, and maintenance crew.

The remainder of this paper describes the emulator and summarizes the
mathematical background for the basic operation with pipelining. We show
that an nth -order polynomial can be de�ned by a di¤erence table comprised of
di¤erences of order up to n. Di¤erences higher than order n do not change
and thereby provide no new information. Some visitors recognized the connec-
tion between di¤erences and the derivatives of calculus. Charles Babbage was
an aggressive adherent of modernizing calculus as it was practiced in England
following its development by the Cambridge University alumnus, Isaac Newton.
The DE2 story can be appreciated without the mathematical details, but as

a teaching aid the historical context might be stimulating. The emulator is eas-
ily reproduced with any programming language that accommodates algebraic
operation on arrays of numbers. A spread-sheet will do. The correspondence
between a di¤erence table and the generating polynomial no longer has practical
utility, but it is an engaging mathematical exercise, particularly when pipelining
is introduced. The pipelining �trick�was not obvious to most DE2 students
including this author. An algorithm is presented that will recover the polyno-
mial coe¢ cients from any sequence of de�ning di¤erences. Babbage was vary
likely aware of such an algorithm. It would have come in handy for checking
the operation.

To conclude this introduction, imagine that DE2 had been built and that ap-
proximating polynomials were being evaluated automatically with the machine

7

and error-free stereographs were being produced. To calculate the log 10 table
entries from 1 to 10 in steps of .0001 requires at least 10,000 cycles. From our
CHM experience, the machine could be operated conservatively at one full cycle
every 8 sec. Allowing for maintenance, stereograph page setup, and trimming
for print, at least one month would have been required to generate a 7-digit
error free log 10 table, certi�ed by Charles Babbage. Would Charles Bab-
bage have been celebrated for that accomplishment, given the cost? There are
published corrections of Babbage�s tables using methods that could have been
implemented in his lifetime [4]. Babbage�s detractors probably would have ar-
gued that error-free tables could have been produced by conventional methods
at much lower cost.
On the other hand, from a recent history of ENIAC by Haigh, Priestley, and

Rope [5], the same conclusion was drawn by some during the early operation of
ENIAC in 1946. We know think of ENIAC as the beginning of numerous devel-
opments that led to commercially available general-purpose digital computers.
If DE2 had been build in Babbages�s lifetime, the Analytic Engine would most
likely have followed. At the time the laws of electricity were being discovered by
Babbage�s contemporaries. Babbage�s famous protegee, Ada Lovelace, kindly
o¤ered to help Michael Fairday with his experiments [6]. James Clerk Maxwell
began his seminal studies at the time of Babbage�s death. None of the seminal
discoveries of the nature of electricity depended on automated computation, but
computational electromagnetics, �nite elements, and such might have caught on
sooner.

2 DE2 Emulation

2.1 Notation and Basic Operations

To introduce some notation, let the 8 31-digit DE2 registers be identi�ed from
left to right as d0, d1, d2, d3, d4, d5, d6, and d7. One full turn of the main shaft
completes an operation cycle in two parts. During the �rst half cycle each
odd register is simultaneously added to the adjacent even register. Formally,
d6 d7 + d6; d4 d4 + d5; d2 d2 + d3; d0 d0 + d1. The left arrow means
replacement of the contents of the register. The new result appears in register
d0 at the end of the �rst half cycle. The addition operation includes servicing
any �agged carry operations and resetting registers d7, d5, d3, and d1 to their
original values for use during the second half cycle. During the second half
cycle the even registers are simultaneously added to the adjacent odd columns:
d5 d5+d6; d3 d3+d4; d1 d1+d2. Carry �ags are serviced and registers
d6, d4, and d2 are reset to their original values.
For emulation the 31 wheel positions are stored as integers in arrays dn(m),

where m represents the �gure wheel index from 1 to 31. An auxiliary array,
C(m), keeps track of the carry lever settings (0 => not warned, 1=> warned,
2=> warning serviced). The addition or giving o¤ operation is implemented
as an element-by-element modulo 10 addition of dn(m) to dn�1(m). When

8

additions produce a second digit the corresponding carry array entry is changed
from 0 to 1 meaning a carry occurred.
The carry phase operation uses the C(m) array to modify dn�1(m) where

carries are needed. Carry polling and servicing starts at the �rst wheel. If a
1 is present, the carry �ag is changed to 2 and 1 is added to the next wheel,
dn�1(m+1) . If that addition causes a carry, C(m+1) is set equal to 1 before
it is polled. A carry bypass �ag inhibits the carry operation, thereby isolating
the wheels above the inhibited carry.
The 30 DE2 polling arms are spaced 22.5 degrees apart with an extra 22.5

degrees included between the 15th and 16th wheels to avoid a physical con�ict
between the 15th and 16th wheel. With this arrangement the actual polling
arms advance in two identical groups of 15, which means that the upper and
lower halves of the column carry warnings are serviced simultaneously. If a
carry occurs at wheel 15 in the �rst rotation, it will not be serviced during the
�rst rotation. A second rotation of the polling arms captures and, if necessary,
propagates any missed carry operations. Since the carry warnings from the
�rst 15 wheels have already been polled and serviced, the second rotation only
a¤ects wheels 16 through 31.
The parallel carry polling could be emulated by applying the carry operation

to digits 16 to 31 and then to digits 1 to 15, which are actually performed
simultaneously. By stopping at 15, no carries propagate. By performing the
polling in reverse order, a carry �ag at digit 15 will not be serviced until the
second cycle is performed. A repeat of the carry phase operations for digits 16
to 31 picks up an unserviced carry at wheel 15. The only reason for using this
level of emulation would be to reproduce register settings within uncompleted
cycles. The register values at the end of each full cycle can be reproduced
simply by implementing the carry-phase operations from 1 to 31.

2.2 Sequential Polynomial Evaluation

To set up a polynomial for DE2 evaluation a di¤erence table is generated. Using
(1), as an example, the following di¤erence table is easily constructed:

x d0 d1 d2 d3 d4 d5 d6 d7
0 41 36 1492 17064 72600 139080 122400 40320
1 77 1528 18556 89664 211680 261480 162720
2 1605 20084 108220 301344 473160 424200
3 21689 128304 409564 774504 897360
4 149993 537868 1184068 1671864
5 687861 1721936 2855932
6 2409797 4577868
7 6987665

(4)
The �rst column is the value of x. The second column is the computed value
of the polynomial at x. Each di¤erence column entry is the di¤erence between
next value and the current value in the adjacent column to the left. An astute

9

observer will notice that any number in the table can be reproduced by adding
the number above it to the number above it in the next column. So, if you
have only the di¤erences at x = 0, you can extend the table inde�nitely with
nothing but additions. Start by repeating the largest di¤erence, which does
not change.
Pipelining will be discussed in more detail later. Looking ahead, pipelining

is set up by manipulating the initial register settings as follows from left to right:

d6 d6n � d7n d6 d6 � d7n d6 d6 � d7n
d5 d5n � d6 d5 d5 � d6
d4 d4n � d5 d4 d4 � d5
d3 d3n � d4
d2 d2n � d3

(5)

The bold face components are being modi�ed or have been modi�ed. Apply-
ing these operations to the di¤erence table provides the initial values for DE2
evaluation of (1):

x d0 d1 d2 d3 d4 d5 d6 d7
0 41 36 28 1464 360 15240 1440 40320

(6)

The extension of the table is performed in place by �rst performing the odd-to-
even additions, followed by the even-to-odd additions.
To maintain a count, the �rst four weels are set to zero in every register

except d1. The �rst wheel in d1 is set equal to 1. At the completion of each
cycle one is added to d0 maintaining a count equal equal to x. With carry lever
4 in column 1 bypassed, the count in the �rst four digits will not a¤ect the 27
digit polynomial result. The �gure below shows the setup of the machine with
the x = 0 value 41 in the d0 register.

10

CYCLE 0
Wheel d0 d1 d2 d3 d4 d5 d6 d7

31 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0

9 0 0 0 0 0 1 0 4
8 0 0 0 1 0 5 1 0
7 0 0 0 4 3 2 4 3
6 4 3 2 6 6 4 4 2
5 1 6 8 4 0 0 0 0
4 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0

Figure 3: DE2 setup for demonstration polynomial.

11

DE2 emulation is implemented with two subprograms:

[da,carry]=GivingOff(d1,d2)
[dc,carry]=CarryPhase(da,carry,nwstart,nwend,DisableFlags)

The GivingOff routine replaces da with the modulo 10 addition of d1+ d2. A
carry �ag array is generated in the carry array with zeros indicating no carry
or 1 indicating a carry warning. The CarryPhase subroutine implements the
carry operations. The carry �ags are serviced from wheel nwstart to nwend.
If the carry �ag corresponding to nwend is set, da(nwend + 1) in incremented.
To service 31 digits, nwend = 30. After executing GivingOff the carry entries
are 0 or 1. After executing CarryPhase all the active carry entry 1 values are
replaced by 2, indicating that the carries have been serviced.

No. ODD-2-EVEN OPERATIONS
GIVING OFF

1 [d6; c6] = GivingOff(d6; d7)
2 [d4; c4] = GivingOff(d4; d5)
3 [d2; c2] = GivingOff(d2; d3)
4 [d0; c0] = GivingOff(d0; d1)

CARRY ROTATION 1
5 [d6; c6] = CarryPhase(d6; c6; 16; 31)
6 [d6; c6] = CarryPhase(d6; c6; 1; 15)
7 [d4; c4] = CarryPhase(d4; c4; 16; 31)
8 [d4; c4] = CarryPhase(d4; c4; 1; 15)
9 [d2; c2] = CarryPhase(d2; c2; 16; 31)
10 [d2; c2] = CarryPhase(d2; c2; 1; 15)
11 [d0; c0] = CarryPhase(d0; c0; 16; 31)
12 [d0; c0] = CarryPhase(d0; c0; 1; 15)

CARRY ROTATION 2
13 [d6; c6] = CarryPhase(d6; c6; 16; 31)
14 [d4; c4] = CarryPhase(d4; c4; 16; 31)
15 [d2; c2] = CarryPhase(d2; c2; 16; 31)
16 [d0; c0] = CarryPhase(d0; c0; 16; 31)

No. EVEN-2-ODD OPERATIONS
GIVING OFF

17 [d5; c5] = GivingOff(d5; d6)
18 [d3; c3] = GivingOff(d3; d4)
19 [d1; c1] = GivingOff(d1; d2)

CARRY ROTATION 1
20 [d5; c5] = CarryPhase(d5; c5; 16; 31)
21 [d5; c5] = CarryPhase(d5; c5; 1; 15)
22 [d3; c3] = CarryPhase(d3; c3; 16; 31)
23 [d3; c3] = CarryPhase(d3; c3; 1; 15)
24 [d1; c1] = CarryPhase(d1; c1; 16; 31)
25 [d1; c1] = CarryPhase(d1; c1; 1; 15)

CARRY ROTATION 2
26 [d5; c5] = CarryPhase(d5; c5; 16; 31)
27 [d3; c3] = CarryPhase(d3; c3; 16; 31)
28 [d1; c1] = CarryPhase(d1; c1; 16; 31)

2.3 The Method of Di¤erences

It is interesting that the following development is di¢ cult to �nd in a text book.
One colleague, an astronomer, said it was so obvious nobody bothered to write
it down. For those who don�t �nd it obvious, let f(x) represent a continuous
function to be approximated by a polynomial over a prescribed range of the
independent variable x . Let P (x) represent the approximating polynomial
of order p. An order p polynomial is de�ned by p + 1 coe¢ cients, which are
denoted eak with k = 0; 1; � � � ; p. The approximating polynomial would normally
be written as eP (x) = pX

k=0

eakxk: (7)

12

The independent variable of a sampled function takes the values xn = n�x+x0,
whereby

fn = f(n�x+ x0); for n = 0; � � � ; N � 1. (8)

However, there is no loss of generality in taking

Pn =

pX
k=0

akn
k;where ak = eak (�x)k : (9)

The sample interval is absorbed in the de�nition of ak. Although one set
of coe¢ cients de�ne a polynomial, the starting point matters. Consider the
M -sample shift

f(n�x+ x0 +M�x) =

pX
k=0

ak (n+M)
k (10)

=

pX
k=0

a0kn
k (11)

The two sets of coe¢ cients ak and a0k are related, but large values of M might
stress the number of digits required. This is of concern only for polynomial
approximation.
Ordered di¤erences are di¤erences between two consecutive values of a func-

tion or the di¤erences between previously computed �nite di¤erences. From a
set of uniformly spaced values of any function, a �nite di¤erence table can be
constructed as follows:

d0n = fn (12)

dmn = d
m�1
n+1 � dm�1n (13)

The m index represents the order of the �nite di¤erence. The n index identi�es
the �rst contributing sample. A �nite di¤erence table to order 7 would be
populated column by column as follows:

fn d1n d2n d3n d4n d5n d6n d7n
fn+1 d1n+1 d2n+1 d3n+1 d4n+1 d5n+1 d6n+1
fn+2 d1n+2 d2n+2 d3n+2 d4n+2 d5n+2
fn+3 d1n+3 d2n+3 d3n+3 d4n+3
fn+4 d1n+4 d2n+4 d3n+4
fn+5 d1n+5 d2n+5
fn+6 d1n+6
fn+7

: (14)

The �rst column is the function evaluated at n: d0n = fn.
If dpn is constant at some order p, all higher order di¤erences are zero. This

occurs if and only if fn is a polynomial of order p. That is, if a di¤erence table

13

has precisely constant di¤erences at order p, the function is a polynomial of
order p. The proposition is proved by demonstrating that unique polynomial
coe¢ cients can be recovered from the �nite di¤erences to the constant value.
An algorithm that will recover the polynomial coe¢ cients from a di¤erence table
can be found in Appendix A. One could also solve a system of p+ 1 equations
in p+ 1 unknowns. The recursion is more elegant and easier to implement.

2.4 Forward Recursion

Having demonstrated the equivalence between a polynomial de�ned by a di¤er-
ence table and a polynomial de�ned by its coe¢ cients, we consider how �nite
di¤erences can be exploited. From (13) it follows that dm�1n+1 = dm�1n + dmn .
Since dpn is constant for all n, the following recursion extends (14) inde�nitely:

d
p�(l+1)
n+(l+1) = d

p�l
n+l + d

p�(l+1)
n+l for l = 0; � � � ; p� 1: (15)

This property shows formally that the sum of any two entries in a di¤erence
table reproduces the di¤erence below the lower order di¤erence. Starting with
the �rst complete row in (14), recursive evaluation of fn with only addition of
di¤erences could proceed as follows:

dpn+1 = d
p
n (16)

d
p�(l+1)
n+1 = dp�ln + dp�(l+1)n for l = 0; � � � ; p� 1: (17)

A device with p+1 storage registers could execute the recursion serially. With
the implicit notation dn with n = 7; 6; � � � ; 0 used to designate the elements in
the nth row of (14), the �nite-di¤erence algorithm is de�ned as follows:

d07 d7 (implicit)

d06 d
0

7 + d6

d05 d06 + d5

d04 d05 + d4

d03 d04 + d3 (18)

d02 d03 + d2

d01 d02 + d1

d00 d01 + d0

The primes are introduced to separate the values before (unprimed) and after
the replacement operations (primed).

2.5 Pipelining

A more e¢ cient scheme can be constructed by looking in more detail at the
operations that execute the forward recursion just described. Consider recon-
structing the di¤erences that de�ne the last completed computation cycle n.
This is achieved by the following operations:

14

fn�3 d6n�3 d7n
fn�2 d4n�2 d5n�2 d6n�2 d7n
fn�1 d2n�1 d3n�1 d4n�1 d5n�1 d6n�1 d7n
fn d1n d2n d3n d4n d5n d6n d7n

: (19)

The reconstruction is performed row by row with repeated use of (13). It can
be seen from (19) that placing the embolden values in the 8 DE2 registers
allows parallel computation. The odd-to-even additions 7 + 6! 6, 5 + 4! 4,
3 + 2 ! 2, and 1 + 0 ! 0 can be performed in parallel. Performing the even-
to-odd additions 6 + 5 ! 5, 4 + 3 ! 3, 2 + 1 ! 1 updates the odd registers
for the next computation cycle. The computed paired di¤erences e¤ectively
reproduce a stair-case di¤erence operation. The setup for pipeline operation
can be computed in place. Writing out the backward recursion explicitly de�nes
the cycle by cycle operations:

n n� 1 n� 2 n� 3
d6n d6n�1 = d

6
n � d7n d6n�2 =

�
d6n�1

�
� d7n d6n�3 =

�
d6n�2

�
� d7n

d5n d5n�1 = d
5
n �

�
d6n�1

�
d5n�2 =

�
d5n�1

�
�
�
d6n�2

�
d4n d4n�1 = d

4
n �

�
d5n�1

�
d4n�2 =

�
d4n�1

�
�
�
d5n�2

�
d3n d3n�1 = d

3
n �

�
d4n�1

�
d2n d2n�1 = d

2
n �

�
d3n�1

�
The values in parentheses have-been modi�ed by previous computations, which
are executed column wise in the table. Written more compactly, the column
wise extra operations required to initiate the pipeline operation, which have
already been introduced follow:

d6 d6n � d7n d6 d6 � d7n d6 d6 � d7n
d5 d5n � d6 d5 d5 � d6
d4 d4n � d5 d4 d4 � d5
d3 d3n � d4
d2 d2n � d3

2.6 Negative Di¤erences

Neither negative di¤erences nor negative functional values can be excluded from
the �nite-di¤erence scheme as described above. However, negative numbers can
be incorporated by adding complements. Write the n-digit negative number as

N = �an10n � an�110n�1 � � � � � a110� a0: (20)

The coe¢ cients an represent positive integers. The tens complement is de�ned
as

NC = (9� an) 10n + (9� an�1) 10n�1 + � � �+ (9� a110) + (9� a0)
= � jN j+ (10n � 1) : (21)

15

Figure 4: Evolution of computer languages for analysis.

From (21) it follows that adding the complement to any positive or negative
complement number in range will produce the correct answer with negative
number remaining in complement form. Thus, negative numbers are written in
tens complement form. If the polynomial produces a negative result, the dif-
ference engine would produce the correct answers in tens complement form. A
non-zero value of digit n would indicate a negative number. Manual conversion
to a signed number would be necessary.

2.7 Emulator Examples

Writing computer code requires a computer language. Computer languages are
speci�c to user applications. FORTRAN, which was developed in the 1950s
by IBM, was the most widely used computational language for analysis, and
it remains in use today. However, as illustrated in Figure 4, computer lan-
guages have evolved into interactive code development environments. The three
symbols following FORTRAN represent MatLab, Mathematica, and Python.
MatLab and Mathematica are commercial products. Python is open-source
with a large user support base.
The operation of the emulator is una¤ected by word size because additions

are performed digit-by-digit. The precision of direct polynomial evaluation is
limited by the 64-bit double precision standard. The native precision of digital
computers is determined by word size. In the 1970�s, the heyday of batch
processing, machines with 32-bit words were widely available. Software allowed
combination of two 32-bit words to achieve double precision computation. The
IEEE standard for 64-bit double precision is now supported directly by 64-bit

16

words6 . In e¤ect, single-precision operations now ful�ll the earlier double-
precision standard.
A 64-bit word can represent integers in the range

I = �263 = �9223372036854775807,

exactly. Floating-point numbers use the �rst bit to indicate the sign followed
by a set of bits used to represent a exponent. The remaining bits represent
the fractional part of the �oating-point number scaled by the exponent. The
64-bit double precision standard assigns 11 bits to the exponent and 52 bits to
the fractional part. Thus, double-precision 64-bit �oating point numbers cover
the range �10�308 to �10308 with 15 to 17 decimal digit precision.
The emulator described in Section 2 was programed in MatLab. Since the

coe¢ cients and the range of x values are within the range of exact representa-
tion, direct evaluation of the polynomial was used to generate a di¤erence table.
The register values were then manipulated for pipelining and loaded digit-by-
digit into the DE2 register columns, mimicing the manual setup of DE2. The
setup is shown in Figure 3. The count is maintained in the �rst 4 digits of the
results column. Digits 5 through 31 store the result. The �rst digit of column
2 is set to 1. The �rst 4 digits of the remaining columns are set to zero.
The upper frame of Figure 5 compares the emulator results converted to a

64 bit integers (red circles) to the result obtained by evaluating (1) with default
�oating-point arithmetic (blue line). The green line marks the largest �oating
point number that can be represented exactly. The lower frame shows the
absolute error scaled to 10�16. The errors would not be noticed in a standard
display, nor would they be troublesome for most routine applications.

At this point we have covered all the material relevant to CHM demon-
strations of DE2 up to August 2013, when the machine was recon�gured to
evaluate base 10 logarithms to 7 decimal digit accuracy. To introduce loga-
rithms, consider the value of x raised to the yth power of 10, which is written
as

x = 10y:

The exponent, y, is the base-10 logarithm of x. That is,

y = log 10(x):

A table of logarithms tells us what value of y will generate x = 10y. Note that
if x is divided by the nth power of 10, the base-ten logarithm is o¤set by n:

y � n = log 10(x10�n):

Consequently, it is only necessary to evaluate log 10 over one order of mag-
nitude. One can easily keep track of the largest value of n that makes x10�n

6 IEEE Standard 754.

17

Figure 5: Polynomial PC evaluation errors.

less than say 10. The tabulation is performed over the decade 1 to 10 7 . Pub-
lished tables of base-10 logarithms list the values yn for xn = 1 + n�x for
n = 0; 1; 2; � � � ; N . The table maker must decide the spacing �x and precision
as indicated by the number of decimal digits, x10�n = 1:ddddddddddd � � � .

3 Polynomial Approximation

The e¢ cient evaluation of functions remains an active area of development to
this day. For example, the routine computation of the position of arti�cial
satellites uses simpli�ed equations with orbital elements that are accurate for a
prescribed period of time.

3.0.1 Taylor Series

The Taylor series was developed by the English mathematician Brook Taylor in
1715. It would have been known in Babbage�s time. Taylor�s theorem states
that any well-behaved function can be represented by an in�nite power series of
the form

f(x) =

1X
k=0

1

k!
f (k) (x)

���
x=x0

(x� x0)k : (22)

where f (k) (x) denotes the kth derivative of f (x) with respect to the independent
variable. The derivatives are evaluated at the starting point of the series. If

7 log 10(0) =1 and log 10(1) = 1.

18

the Taylor series is truncated at p, the contribution of the neglected remainder
can be bounded by the relation

Rp = (x� x0)p+1f (p+1) (�) where x0 � � � x: (23)

Since derivatives of the functions most commonly tabulated are generally known,
Taylor series approximations can be implemented directly. However, because
the DE2 e¤ectively increments the index without the o¤set, the polynomial
series must be evaluated in its Maclaurin form

f(x+ x0) =
1X
k=0

1

k!
f (k) (x+ x0)

���
x=0

xk: (24)

For completeness,

log 10(1 + n�x) =

pX
n=0

[(��x)n= (n log(10))]nn: (25)

3.0.2 Least Squares

Because Taylor series error increases with increasing x, it is poorly suited for
uniform approximation. The method of least squares allows minimization of the
error over a speci�ed interval, which is well suited to polynomial approximation.
The least squares method was developed by Carl Fredric Gauss near the end of
the 18th century, and it would have been well know in Babbage�s time.
An approximating polynomial has p + 1 unknowns. The least-squares so-

lution to the polynomial approximation problem minimizes the quadratic error
measure

�2 =
N�1X
n=0

pX
k=0

akn
k � fn

!2
: (26)

The solution, obtained by di¤erentiating �2 with respect to ak then setting each
di¤erentiation to equal zero. The system of linear equations that de�nes the
least-squares solution can be written in matrix-vector form ash

V pNV
pT
N

i�!a = V pN�!f ; (27)

where�!a the column vector arrangement of the unknown polynomial coe¢ cients,
and
�!
f a column vector arrangement of the N values of the function. The

Vandermonde matrix, V pN , is de�ned as

V pN =

2666664
1 1 1 � � � � � � 1

0 1 2 (N � 1)1

0 1 22 (N � 1)2
...

0 1 2p (N � 1)p

3777775 : (28)

19

The formal solution for N � p is

�!a =
h
V pNV

pT
N

i�1
V pN
�!
f ; (29)

The matrix
h
V pNV

pT
N

i
, is p � p; however, if N = p, the solution reduces to the

simpler form
�!a = [V pN]

�1�!
f : (30)

The Vandermonde form, (29) can be solved more e¢ ciently than the general
solution of a system of linear equations. However, with small numbers of
function samples, the computation time is dominated by the computation ofh
V pNV

pT
N

i
, and the evaluation of the right-hand side, V pN

�!
f . Each entry of the

product vector is a moment of the form

Mk =
N�1X
n=0

nkfn for k = 1: (31)

Note also that dropping the �rst column in V pN is equivalent to constraining the
solution to be zero at n = 0.

A Polynomial coe¢ cient recovery

Finite di¤erences of order m can be written in terms of m + 1 values of fn
explicitly:8

dmn =
mX
k=0

(�1)k
�
m

k

�
fn+m�k: (32)

where �
m

k

�
=

m!

(m� k)!k! : (33)

If fn is a polynomial, fn+m�k can be written as

fn+m�k =

pX
l=0

al(n+m� k)l: (34)

To determine the de�ning polynomial coe¢ cients, consider the set of �nite dif-
ferences at n = 0:

fm�k =

pX
l=0

al(m� k)l (35)

=

pX
l=0

al

lX
l0=0

(�1)l
0
�
l

l0

�
kl

0
ml�l0 (36)

8Abrmowitz and Stegun 25.1[7]

20

Substituting fm�k into the expression for dmn it follows that

dp�j0 =

p�jX
k=0

(�1)k
�
p� j
k

�
fp�j�k (37)

=

p�jX
k=0

(�1)k
�
p� j
k

� pX
l=0

al

lX
l0=0

(�1)l
0
�
l

l0

�
(p� j)l�l

0
kl

0
(38)

=

pX
l=0

al

lX
l0=0

(�1)l
0
�
l

l0

�
(p� j)l�l

0
Sp�jl0 (39)

where

Sml0 =
mX
k=0

(�1)k
�
m

k

�
kl

0
. (40)

One can verify that Sml0 = 0 for l
0 < m. It follows that

dp�j0 =

pX
l=p�j

al

lX
l0=p�j

(�1)l
0
�
l

l0

�
(p� j)l�l

0
Sp�jl0 (41)

= ap�j(�1)p�jSp�jp�j (42)

+

pX
l=p�j+1

al

lX
l0=p�j

(�1)l
0
�
l

l0

�
(p� j)l�l

0
Sp�jl0 (43)

The contributions to dp�j0 are determined by the coe¢ cients from p � j to p.
This leads to the following recursion:

ap =
dp0

(�1)pSpp
(44)

ap�j =

(
dp�j0 �

Pp
l=p�j+1 ealPl

l0=p�j(�1)l
0� l
l0

�
(p� j)l�l

0
Sp�jl0

(�1)p�jSp�jp�j
for j = 1; � � � ; p

(45)

21

References

[1] Doron Swade. The Cogwheel Brain. Little, Brown, and Company, 2000.

[2] Doron D. Swade. The construction of charles babbage�s di¤erence engine
no. 2. Annals Hist. Comput., 5(1058-6180):70�87, 2005.

[3] I. Grattan-Guinness. Work for the hairdressers: The production of de
prony�s logarithmic and trigonometric tables. Annals Hist. Comput.,
12(3):177�185, 1990.

[4] Roegel. A reconstruction of Charles Babbage�stable of logarithms (1827).
LOCOMAT project:http://locomat.loria.fr, 2012.

[5] Thomas Haigh, Mark Priestley, and Crispin Rope. ENIAC in Action. MIT
Press, 2016.

[6] Betty Alaxandra Toolel. ADA The Enchantress f Numbers. Critical Con-
nection, 2010.

[7] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Func-
tions with Formulas, Graphs, and Mathematical Tables. Dover Publications,
Inc., 1965.

22

