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Abstract Characterization of ionospheric structure starts with spectral analysis of one-dimensional time
series. Unknown spectral density function (SDF) parameters are estimated by model-fitting procedures,
which will be referred to in this paper collectively as irregularity parameter estimation. If the diagnostic
SDF has a power law form, linear least squares estimation (LLE) can be used to estimate the power law
parameters. In this paper simulations are used to investigate LLE estimates of diagnostic single-component
and two-component power law SDFs. There is a known turbulent strength bias and a more troublesome
correlation between the turbulent strength and the spectral index. We found that this intrinsic property of
LLE estimators completely explains a similar correlation long observed in both in situ and radio propagation
ionospheric diagnostic measurements. Maximum likelihood estimation (MLE) is superior to LLE
but requires knowledge of the probability distribution function of the SDF estimator. To this end one
can exploit the fact that the probability distribution function of a periodogram about the its true mean
is well approximated by a 𝜒D distribution. With an hypothesized true mean SDF defined by a small set of
parameters, the parameters can be adjusted to maximize the likelihood that the periodogram was
generated by the parameterized SDF. Furthermore, algorithms that adjust parameters to maximize
likelihood can use functions of the defining parameters being adjusted to improve performance.
Recognizing that correlation between turbulent strength and spectral index estimates is an intrinsic
measurement property, error minimization is particularly important. A modified MLE procedure is presented
that provides robust initiation and good two-component power law parameter estimates.

Plain Language Summary This paper evaluates power law parameter estimation procedures
that are routinely used to characterize intermediate-scale ionospheric structure. An intrinsic correlation
between turbulent strength and a large-scale power law index is identified. A modified maximum likelihood
procedure is introduced to minimize the parameter errors.

1. Introduction

The principal metric for characterizing ionospheric structure is the spectral density function (SDF), which
is formally the expectation of the intensity of a spatial Fourier decomposition of the structure. Ionospheric
structure is highly elongated along the direction of the Earth’s magnetic field, whereby stochastic variation
is manifest only in planes that intercept field lines. Structure models project the two-dimensional structure
onto measurable one-dimensional SDFs. Model development has been stimulated by recent physics-based
high-resolution equatorial plasma bubble simulations Yokoyama (2017) and by new propagation theory
results Carrano and Rino (2016). The equatorial plasma bubble simulations can be used to measure the
intermediate-scale structure directly. The propagation theory results relate measured one-dimensional scin-
tillation intensity SDFs to the path-integrated SDFs that generated the scintillation. In effect, the propagation
diagnostics can be related directly to equivalent path-integrated structure models.

Because the structures are assumed to be static, conversions of measurement-specific time series to scan
distance can be employed for model-data comparisons. Knowledge of the probe motion and structure drift
is sufficient for in situ diagnostics. Knowledge of the location and motion of a reference coordinate system is
necessary for propagation diagnostics in addition to the structure drift. Either way, the scaling and geometric
transformations can be absorbed in an effective velocity such that

y(t) = veff(t − t0). (1)
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Consequently, only spectral analysis of spatially varying data segments needs to be considered.

Finally, by hypothesizing a parameterized analytic SDF form, the structure classification problem is reduced
to estimating a small number of defining parameters. The two-component power law model

Φ(q) = Cs

{
q−𝜂1 for q ≤ q0

q𝜂2−𝜂1
0 q−𝜂2 for q> q0

, (2)

where q is the spatial wavenumber in radians per meter is sufficient for characterizing intermediate-scale
ionospheric structure. A two-component SDF functionally similar to (2) was introduced by Carrano and Rino
(2016) to characterize the path-integrated phase SDF, which is not directly measurable. A compact theory was
developed to predict the scintillation intensity SDF as a function of the path-integrated phase parameters.
Here we consider direct estimation of power law parameters. The notations Cs and 𝜂n are used to distinguish
the in situ parameters from the propagation diagnostic parameters Cp and pn.

If the theoretical SDF is a multicomponent power law, the simplest approach to power law SDF parameter
estimation exploits logarithmic transformation of the spectral estimates. The procedure was used to analyze
in situ data from the C/NOFS satellite (Rino et al., 2016). Wavelet-based estimators were used in part to identify
homogeneous data segments and also because wavelet estimators are well matched to power law processes.
The following correlation between the estimated 𝜂1 and Cs and parameters was noted in the C/NOFS study:

𝜂1 = −0.02(CsdB − C0dB). (3)

The notation CsdB means 10 log10(Cs). The CsdB − 𝜂1 correlation has also been observed in propagation
diagnostics (Livingston et al., 1981; Rino et al., 1981).

Linear least squares estimation (LLE) is attractive because it requires no knowledge of the estimator statis-
tics. Furthermore, it is well matched to power law SDFs, which are linear when applied to log-SDF versus
log-frequency presentations, as already noted. However, it is well established that improved error perfor-
mance can be achieved with maximum likelihood estimates (MLEs). However, MLE estimators achieve their
performance improvement by using knowledge of the probability density function (PDF) of the estima-
tor. For periodogram spectral estimators the PDF is known to follow 𝜒D statistics for any well-behaved
homogeneous process.

There has been a progression of estimation procedures from LLE to MLE, which is well illustrated in the
papers by Vaughan (2005, 2010) and Barret and Vaughan (2011). However, the correlation represented
by (3) is an intrinsic property of estimated power law parameters; however, they are obtained. Moreover,
although wavelet-based estimators are more accurate than periodogram estimators at higher frequencies,
errors rapidly build up in the low-frequency range. The frequency dependence of the wavelet error distribu-
tion exaggerates the CsdB−𝜂1 correlation. In light of these findings this paper reviews and extends power law
parameter estimation procedures.

2. Spectral Analysis Theory Summary

Estimating parameters that define the SDF of a power law processes begins with an SDF estimate.
Periodogram-based spectral estimation is well established for this purpose. The periodogram of the data
sequence, Fk = F(kΔy), for k = 0, 1, · · · ,N − 1 is defined as

Pn = 1
N
|||F̂n

|||2
, (4)

where

F̂n =
N−1∑
k=0

Fk exp {−ink∕N} (5)

is the discrete Fourier transform. From the relation

1
N

N−1∑
k=0

F2
k = 1

N

N−1∑
n=0

Pn, (6)
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it follows that

1
N

N−1∑
k=0

⟨
F2

k

⟩
= ∫ Φ(q)

dq
2𝜋

, (7)

where the angle brackets denote expectation and Φ(q) is the SDF.

A standard procedure is used to generate realizations of Fk , namely,

Fk =
N−1∑
n=0

√
Φ(nΔq)Δq∕ (2𝜋)𝜁n exp {ink∕N} , (8)

whereΔq = 2𝜋∕(NΔy) and 𝜁n is a zero mean Gaussian process with the white noise property:

⟨
𝜁n𝜁

′
n

⟩
=
{

1 for n = n
0 for n ≠ n′ . (9)

Substituting (8) into (5), it follows that

⟨|F̂n|2
⟩
= Φ(nΔq)Δq∕ (2𝜋) , (10)

and from (7)

⟨Pn⟩NΔq∕2𝜋 = Φ(nΔq), (11)

whereby a properly scaled periodogram is an unbiased estimate of the SDF. Although real processes have
features generated by Fourier-component phase correlations, idealized realizations defined by (8) provide
well-defined uniform statistics for exploring relations determined by the statistical structure.

Now consider the average

y = 1
M

M∑
l=1

Φ̂(l)
n , (12)

where Φ̂(l)
n is a scaled periodogram estimate of a process with SDF Φn. By construction, Fk and F̂n are Gaussian

random processes. For Gaussian random processes the summation of M intensity measurements has a known
distribution:

P(y) =
yM−1 exp

{
−y∕

(
Φn∕M

)}
(
Φn∕M

)M Γ(M)
. (13)

As described in Appourchaux (2003), the complex process that generates the realizations has 2 degrees of
freedom per realization, which is accommodated in (13). From (13) the moments, ⟨Im⟩, and the fractional
moments, Fm = ⟨Im⟩ ∕ ⟨I⟩m, can be computed:

⟨Im⟩ =
(
Φn∕M

)m Γ(M + m)
Γ(M)

(14)

Fm = Γ(M + m)∕Γ(M)∕Mm. (15)

The first and second moments, < y > = Φn and
√⟨y2⟩− < y >2 = Φn∕

√
M, completely define the statistics

of Φ̂n in terms of Φn. The fractional moments for M = 1 reduce to Fm = m!.

In the following analysis ideal realizations will be used. However, the statistics of real data deviate significantly
from Gaussian. Even so, experience and analysis, for example, Kokoszka and Mikoschb (2000), show that the
Gaussian results apply more broadly. Figure 1 is a plot of the PDF of y∕Φ, which represents the scaled peri-
odogram error relative to the mean. The Gaussian distribution, which is the large-M limit, is overlaid in red.
The plot shows that for M < 10 there is a significant difference between the most probable value, denoted by
the red pentagram, and unity mean. Averaging the periodogram estimates brings the most probable value
closer to the desired true mean.
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Figure 1. Probability distribution function (PDF) of y∕Φn (blue) with
Gaussian limiting form overlaid (red).

3. Wavelet-Based Spectral Estimation

A complete treatment of wavelets can be found in the text books by Mal-
lat Mallat (2009) or Strang and Borre (1997). Wavelets measure structure
scale, s, as a function of the position within a segment as opposed to
the Fourier domain frequency, (2𝜋∕s), which applies to the entire segment.
The limitations of position-dependent scale measurements are manifest
in the wavelet transformations. The continuous wavelet transformation
(CWT) is defined as

Fw(s, y) = ∫
∞

−∞
F(y′) 1√

s
w(

y′ − y
s

)dy′

= ∫
∞

−∞
sF̂(q)ŵ(sq) exp{iqy}

dq
2𝜋

.

(16)

The Fourier transform relation is typically used to evaluate the CWT numer-
ically. Wavelets have the following defining properties:

w(s) = 0 for |s|> 1∕2 (17)

∫
1∕2

−1∕2
w(s)ds = 0 (18)

∫
1∕2

−1∕2
|w(s)|2 ds = 1 (19)

∫
∞

−∞
|ŵ(q)|2 dq

q
< ∞. (20)

The final property ensures that the CWT is invertible. At each wavelet scale the CWT is a formally a convolution
with a wavelet with finite support over the supported scale range.

The discrete wavelet transform (DWT) extracts only octave-spaced wavelet scale estimates at s = Δy2j for
j = 1, 2,… , J, where J is the largest power of 2 that equals or exceeds N, that is, 2J ≥ N. Each DWT wavelet
is applied to the even number of samples that span the wavelet. The wavelet scale is defined by j with j = 1
corresponding to largest scale, which is usually discarded. The number of wavelet contributions varies with
the scale index, j. For j = 2, n = 1 and 2 corresponding to the centers of two half segments. The smallest
wavelet scale contributes N∕2 centered samples. A discrete wavelet contribution requires a minimum of two
data samples. The spatial frequency associated with the structure scale, s, is q = 2𝜋∕s. The DWT,

dj
n = 1

2

N−1∑
k=0

Fk
1√
2j−1

w((k − n) ∕2j−1), (21)

can be evaluated with the same efficiency as the discrete Fourier transform by using an elegant multifiltering
operation described in the cited text book references.

Because the wavelet transform is a linear operation applied to a zero mean Gaussian process, dj
n, like its peri-

odogram counterpart, is a zero mean Gaussian process. Moreover, from the spectral domain form of the CWT
it can be shown that

⟨Fw(s, y)Fw(s, y + Δy)⟩ = ∫
∞

−∞
Φ(q) |sŵ(sq)|2 exp {iqΔy}

dq
2𝜋

. (22)

From the statistical homogeneity assumption it follows that
⟨|||dj

n
|||2⟩

is independent of n. The wavelet scale
spectrum, as introduced by Hudgins Hudgins et al. (1993), is a summation over the contributing wavelet
estimates at each scale; formally,

Sj =
1

2j−1

2j−1∑
n=1

||dj
n
||2
. (23)
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Figure 2. Periodogram upper frame (cyan) and scale spectrum lower frame (cyan) estimates from two-component
power law SDF realizations. The solid red curves show the initiating SDF. PSD = power spectral density; SDF = spectral
density function.

Upon substituting (2) into (22), it follows that

⟨|||dj
|||2⟩

= Cs

{
B1( 𝜂1, q0)s−𝜂1 for s ≤ q0

B2( 𝜂2, q0)q
𝜂2−𝜂1
0 s−𝜂2 for s> q0

, (24)

where

B1( 𝜂1, q0) = 2∫
q0

0
u−𝜂1 |ŵ(u)|2 du

2𝜋
, (25)

and

B2( 𝜂2, q0) = 2∫
∞

q0

u−𝜂2 |ŵ(u)|2 du
2𝜋

. (26)

We will show with examples that B1( 𝜂1, q0) ∼ B2( 𝜂1, q0) ∼ 1, which implies that
⟨|||Sj

|||2⟩
= Φj . We show

that the variance of the wavelet scale spectrum estimates decrease with increasing spatial frequency, but
the statistics are distinctly different from the 𝜒D distribution that applies to sums of independent spectral
estimates. Unfortunately, we have no characterization of the wavelet scale spectra PDF.

4. Realization Examples

Realizations defined by (8) have been generated with N = 4, 096 samples spanning 100 km. The sample inter-
val, Δy = 24.41 m, and the 100-km extent define the positive spatial frequency range from Δq = 2𝜋∕(N𝛿y) to
the Nyquist frequency q = 𝜋∕Δy. The sampling and spatial extent were chosen to be representative of iono-
spheric diagnostic measurements. Because realizations generated by (8) are zero mean and periodic, there
are no end point discontinuities that would otherwise introduce side lobe contamination.

Periodogram estimates defined by (4) and scale spectrum estimates defined by (23) were generated from
1,000 realizations for an SDF with 𝜂 = 2 and for a two-component SDF with 𝜂1 = 1.5, 𝜂2 = 2.5, and q0 =
2𝜋∕3000. A constant value Cs = 10 was used for all the realizations. The constant value of Cs is not restrictive
because realizations can be scaled without changing the underlying statistics. For the DWT computation a
folded replica of the realization is used to eliminate discontinuities in the last contributing wavelet. Any edge
contamination is confined to the wavelet contributing to the largest segment distance.
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Figure 3. Summary statistics for single power law with 𝜂 = 2. SDF = spectral
density function.

Figure 2 summarizes the scaled periodogram and scale spectrum esti-
mates for the two-component realizations. The overlaid cyan curves in the
upper frame are the 2,047 scaled periodogram estimates spanning the
resolved spatial frequency range. The overlaid cyan curves in the lower
frame are 11 of the 12 octave-spaced scaled scale spectra estimates, start-
ing with the second resolved scale. The solid red curves are the defining
theoretical SDFs. There appears to be less periodogram fluctuation about
the mean in the low-frequency range, which is a consequence of the
decreasing number of contributing logarithmically spaced frequency sam-
ples. We will show that the periodogram fluctuation statistics about the
mean are identical at all frequencies. This is in sharp contrast to the wavelet
scale spectrum estimates, which have very small variation at the higher
frequencies. The scale spectrum error progressively increases to complete
uncertainty at the lowest-resolved spatial frequency.

To explore the statistics of the periodogram and scale spectra SDF esti-
mates, 100-realization averages were used to compute the means and
the second and third fractional moments. The results are summarized in
Figures 3 and 4. Because the periodogram measures are frequency inde-
pendent, only the average values over the frequency ranges are shown
together with the expected theoretical values in predicted by (15) in

parentheses. As already noted, there is no complementary PDF model for the wavelet scale spectra. The mea-
sured second and third fractional moments are listed next to the average scale spectra samples plotted as
red circles. The wavelet fractional moments decrease rapidly to near unity with increasing frequency, which
quantifies the observation that wavelet scale spectra estimates are much more certain at the higher fre-
quencies. However, the moments differ significantly from 𝜒D, where D = 2Nj , which would be expected for
averaged independent spectral estimates. All the measured moments are nearly identical for the single- and
two-component realizations.

5. Logarithmic Transformation

Because of the linear dependence of the logarithm of power law segments on the logarithm of frequency, it
is natural to base estimates of the defining power law parameters on logarithmic transformations of spectral
estimators. Log-linear least squares estimation (LLE) has been analyzed and reported in a paper by Vaughan
(2005). The blue curve in Figure 5 is the average of 100 estimates of log10

(
Φ̂n

)
versus log10(q∕(2𝜋)) for the

𝜂 = 2 SDF. Aside from the −2.48-dB bias, which can be predicted and removed as shown by Vaughan (2005),

Figure 4. Summary statistics for two-component power law. SDF = spectral density function.
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Figure 5. Mean of logarithm of spectral estimates for 𝜂 = 2. SDF = spectral
density function.

the results suggest that LLE should recover the Cs and 𝜂 parameters. The
wavelet scale estimates (red circles) show negligible bias at large frequen-
cies, with a progressive increase to a larger bias than the log periodogram
estimate at the lowest frequency.

Figure 6 summarizes three sets of LLE estimates. The blue circles are
derived from periodogram LLE estimates, which are in agreement with
Vaughan (2005), although in Figure 6 the bias has not been removed.
The cyan circles are derived from scale spectra estimates over the full
scale range. The scale spectra results have a smaller bias, but larger uncer-
tainty. However, knowing that the scale spectra uncertainty increases with
decreasing frequency, the highly uncertain estimates can be eliminated.
The red circles show the scale spectra results derived from scale spectra
estimates constrained to the more certain large-scale range. The con-
strained LLE results with scale spectra are comparable to the periodogram
estimates.

The distinguishing characteristic of all the LLE estimators is the correlation
of the CsdB and 𝜂 estimates. Formally, the uncertainty ellipse is rotated and
displaced from its the true value. The blue line is the least squares fit to the
unconstrained periodogram estimates. The log-linear correlation perfectly

reproduces the correlation found in the C/NOFS data reported in Rino et al. (2016) and other LLE-based esti-
mates. This shows that the ubiquitous coupling regularly observed in LLE estimates is a measurement artifact,
not a characteristic of the structure generation process.

If the measurement objective is to estimate the defining power law parameters, it is necessary to have enough
measurements to identify the uncertainty ellipse, whereby the center can be estimated and any known bias
corrected. However, if that many independent samples are available, reducing the uncertainty before applying
LLE is more effective. This is illustrated in Figure 7. The upper frame repeats the periodogram results shown
in Figure 6 for reference. The second and third frames show the improvements realized with LLE M = 2 and
M = 10 preaveraged periodogram estimates. Averaging scale spectra estimates does not improve the results,
evidently because the low-frequency errors are not reduced significantly.

The larger challenge is accommodating two-component power law processes, which introduces two-more
unknowns. The scheme that was used to analyze the C/NOFS data reported in Rino et al. (2016) applied two LLE

Figure 6. Scatter diagrams of power law log least squares parameter estimates from periodogram (blue) and scale
spectra estimates for a single-component 𝜂 = 2 power law unconstrained (cyan) and constrained (red). The solid line is a
least squares fit to the scale spectra estimates. LLE = linear least squares estimation.

RINO AND CARRANO 7
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Figure 7. Scatter diagrams of power law parameters derived with LLE
applied to M = 1), (nonaveraged) M = 2, and M = 10 preaveraged
periodogram estimates. LLE = linear least squares estimation.

fits to partitions with increasing break points. The smallest overall LLE was
selected. The problem with this approach, in retrospect, is that it captures
and exaggerates the CsdB-𝜂 correlation.

6. Irregularity Parameter Estimation

Irregularity parameter estimation (IPE) as a generic procedure adjusts a
parametric representation of an SDF to match a periodogram measure-
ment. This requires a goodness-of-fit measure. Following the progression
from LLE to MLE, the initial IPE procedure described in Carrano and Rino
(2016) used the LLE measure

𝜀2(Φ̂n|Φn) =
1
N

∑
n

(
log Φ̂n − logΦn

)2
, (27)

where Φ̂n represents the periodogram estimate,Φn represents the param-
eterized theoretical model, and N is the number of frequency samples.
In a later paper Carrano et al. (2017) revised the IPE procedure to use
MLE based on the 𝜒D model. Here we implement the MLE procedure for
estimating two-component power law parameters as an extension of the
single-component procedure described and demonstrated in Vaughan
(2010) and Barret and Vaughan (2011).

To briefly review the formalism, we let P(Φ̂(M)
n |Φn) represent 𝜒D as defined by (13) with y replaced by Φ̂n and

Φ replaced by Φn. The probability of observing a sequence of independent SDF estimates is
∏

n
P(Φ̂(M)

n |Φn).

Logarithm transformation converts the product to the summation:

Λ(Φ̂(M)
n |Φn) = − log

N∏
n=1

P(Φ̂(M)
n |Φn)

=
N∑

n=1

[
M(Φ̂(M)

n ) − M log(MΦ̂(M)
n ∕Φn)

+ log(Φ̂(M)
n ) + logΓ(M)

]
.

(28)

A maximum likelihood estimate (MLE) is obtained by adjusting the defining Φn parameters to minimize (28),
which maximizes the likelihood that Φn generated the realization.

Figure 8. Offset ΔΛ histograms for single power law realizations with M = 1 (upper frame) and M = 2 (lower frame).
PDF = probability distribution function; LLE = linear least squares estimation.
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Figure 9. Comparison of Nelder-Mead iterations to convergence with
varying Cs and CsdB. CDF = cumulative distribution function.

What remains is to establish a procedure for minimizing (28). For a
single-component power law, the parameters that minimize (28) can be
computed analytically. Moreover, the statistical theory establishes bounds
on the covariance matrix of the MLE parameter estimates. Indeed, covari-
ance calculations by Barret and Vaughan (2011) confirm the Cs-𝜂 corre-
lation. For multiple parameter minimization there is a well-established
simplex method generally referred to a the Nelder-Mead algorithm (Olsen
& Nelsen, 1975). As one would expect, the Nelder-Meade algorithm is
acutely sensitive to the behavior of the function being minimized as a
function of the defining parameters. Indeed, initiating a search with the
correct minimum parameters initiates a search, which effectively verifies
the parameters. Convergence criteria are also a concern. These issues are
discussed in Barret and Vaughan (2011).

We follow Barret’s procedure, but note that one has some latitude in deter-
mining how the object function ΔΛ is minimized. For example, the algo-
rithm can vary either Cs or the logarithm of Cs. Given the log-linear relation
between the turbulent strength and the power law index, one might
expect better convergence by varying CdB. Either way, the difference
between the log-likelihood prior to minimization and the log-likelihood
for the true SDF is introduced as a measure of log-likelihood uncertainty:

ΔΛ = Λ(Φ̂(M)
n |ΦT

n) − Λ(ΦT
n|ΦT

n), (29)

where the T superscript indicates the true realization SDF. Figure 8 shows a comparison of ΔΛ histograms
for the single power law realizations with M = 1 and M = 2. Because Λ is minimized for each Φ̂(M)

n esti-
mate, the negative values in the upper frame of Figure 8 have no particular significance. Consistent with
Figure 1, Figure 8 shows that averaging as few as two SDF estimates significantly reduces the ΔΛ variation.
The ΔΛ variation for two-component realizations shows identical behavior. With regard to the Nelder-Mead

Figure 10. The left frames show maximum likelihood estimation (MLE) parameters for single power law M = 1. The right
frame shows 𝜂 − CsdB correlation.

RINO AND CARRANO 9
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Figure 11. Maximum likelihood estimation (MLE) parameters for M = 1 two-component power law realizations.

algorithm, Figure 9 compares the cumulative distributions of the number of iterations to Nelder-Mead con-
vergence with varying Cs and CsdB. For these calculations the MATLAB implementation of the Nelder-Mead
simplex algorithm was used.

Figure 10 shows the MLE parameters for a single power law with M = 1. The Nelder-Mead search was ini-
tiated with the LLE estimate. We see that upon comparison to the LLE results, MLE removes the Cs bias and
significantly reduces statistical uncertainty. The right frame shows that the Cs-𝜂 correlation persists, although
the correlation is imperceptible in the summary results. These results are in complete agreement with results
reported by Vaughan (2010) and Barret and Vaughan (2011). For the single power law realization processes
with no averaging minimizing the object function by varying Cs or CsdB has little effect on the uncertainty

Figure 12. Two-component Cs parameter histogram (blue) with exponential
distribution overlaid (red). MLE = maximum likelihood estimation;
PDF = probability distribution function.

and Cs−𝜂 correlation. As an overall check on performance the Nelder-Mead
search was initiated with the true parameter values. The differences,
including convergence, are imperceptible.

Two-component power law estimation requires four-parameter initiation.
To this end, a midfrequency q0 estimate is selected, which partitions Φ̂(M)

n

into two contiguous sets. Log-linear least squares estimation is applied
to each segment, with a final adjustment to enforce equality at the break
scale. For the two-component power law realizations there is a signifi-
cant improvement in both parameter error reduction and Nelder-Mead
convergence when the search is performed on CsdB. Figure 11 shows the
estimated parameters for M = 1. As with the single power law results,
the same end result is obtained when the search is initiated with the true
parameters. The 𝜂1, 𝜂2, and 2𝜋∕q0-km parameters are unbiased.

The Cs parameter estimates are more variable. However, the mean of the
estimates is the correct value. To explore this further, Figure 12 shows a
histogram of the Cs estimates (blue) with the exponential PDF overlaid in
read. Evidently, the Cs fluctuations are capturing the exponential distribu-
tion of the periodogram SDF estimate. Figure 13 shows a scatter diagram of
the 𝜂1,2 parameter estimates versus CsdB. The CsdB-𝜂1 correlation persists.
However, as with the single power law realizations, the 𝜂1-CsdB correlation

RINO AND CARRANO 10
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Figure 13. Maximum likelihood estimation (MLE) 𝜂1,2 versus CsdB scatter diagrams for two-component power
law parameters.

is imperceptible in the individual parameter fluctuations. There is no correlation between CsdB and the 𝜂2

parameter estimates. Significant improvements are realized with averaging.

7. Discussion and Summary

This paper reviewed LLE and MLE power law spectra parameter estimation using both periodogram
and wavelet-based spectral estimators. All of the procedures generate correlated turbulent strength and
large-scale spectral index parameter estimates. The correlation has been noted in in situ and remote iono-
spheric diagnostics but incorrectly attributed to the structuring process. MLE estimation removes biases and
significantly reduces statistical errors. Correlation between the CsdB and the large-scale index persists. How-
ever, the MLE estimate modified to adjust CsdB rather than Cs reduces the Cs and 𝜂1 errors to negligible levels.
Even so, correlation can be detected but recognized as intrinsic to parameter estimation.

The fact that using wavelet scale spectra exaggerates the Cs-𝜂1 coupling was not expected. It is well known
that the dyadic wavelet scale separation is well matched to the continuous fractal property of power law pro-
cesses. Our results verify this property, but for parameter estimation scale independence of the error statistics
is more important than scale selective error reduction. It the absence of a PDF model for wavelet scale spectra
MLE estimation intractable. However, we note that most wavelet-based structure analysis is based on spatial
domain structure functions as opposed to spectral domain measures Peter and Rangarajan (2008).
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