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A B S T R A C T

The scalar forward propagation equation, most often with the parabolic approximation, has been used
extensively for simulating ionospheric radio propagation. More recently, the formalism has been applied at HF
frequencies where external magnetic field effects must be accommodated. This paper presents a generalization
of the forward propagation equation to accommodate vector fields with forward-marching integration. The
ramifications for characteristic mode identification are explored.
1. Introduction

This paper presents a generalization of the forward-propagation-
equation (FPE) method to accommodate propagation in the earth’s
ionosphere at radio frequencies above 3 MHz. Constitutive relations
characterize the interaction of electromagnetic (EM) fields with propa-
gation media. In the HF frequency band (3 to 30 MHz) the ionospheric
constitutive relation is a tensor, which depends on the direction and
strength of the earth’s magnetic field. At higher frequencies the di-
electric tensor becomes polarization independent, whereby it can be
replaced by a scalar.

The homogeneous wave equation characterizes propagation in a
uniform medium. Solutions are summations of characteristic modes.
Well known examples include plane waves, cylindrical waves, and
spherical waves. However, real-world media are temporally varying
and spatially inhomogeneous. Maxwell’s equations can be formulated
in the time-domain or the temporal frequency domain. The frequency-
domain formulation will be used in our development. Spatial inho-
mogeneities are accommodated by incorporating induced secondary
radiation.

Obtaining tractable solutions to the inhomogeneous wave equation
is challenging because every point in the propagation space is po-
tentially influenced by every other point. The problem is simplified
significantly by replacing the second-order differential equation that
governs wave propagation with coupled first-order differential equa-
tions that separately characterize forward and backward propagation.
Forward propagation refers to the direction from a local source of
radiation. Induced propagation in the opposite direction (typically
Bragg backscatter) is small enough to be neglected insofar as its effect
on forward propagation is concerned.

A complete derivation of the vector FPE will be presented. However,
it is instructive to review the underlying concepts. The second-order
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differential equation that governs propagation in a scalar medium has
the form

∇2𝐹 + 𝑛2𝑘2𝐹 = 0, (1)

where 𝐹 represents an EM field component, 𝑘 = 2𝜋𝑓∕𝑐 with 𝑐 the
vacuum velocity of light and 𝑛 the refractive index. An assumed form
for the solution leads to a formal factorization of (1) as the product of
two first-order differential equations of the form

𝜕𝐹±

𝜕𝑠
= 𝛩𝑛𝐹 ± 𝑖𝑘𝛥𝑛𝐹 , (2)

where 𝐹 = 𝐹+ + 𝐹− represents the total field as a summation of two
fields propagating in opposite directions. The propagation operator,
𝛩𝑛𝐹±, advances each spatial Fourier component of the field along the
±𝑠 directions. The refractive index has been separated into a back-
ground component, 𝑛0, and a perturbation, 𝛥𝑛. In the factored form
𝑖𝑘𝛥𝑛 is a phase perturbation. The FPE is obtained by neglecting the
backscatter contribution (Flatte, 1986; Levy, 2000; Kuttler, 1999).

The attractive feature of the FPE, as represented by (2) with 𝐹±

replaced by 𝐹+, is the explicit identification of additive propagation
and media-interaction contributions. The integration step is bounded by
planes perpendicular to the propagation reference direction, although
the boundaries are not associated with physical layers. Split-step inte-
gration applies the media-interaction and propagation terms separately.
The integration step starts with a phase perturbation, formally the
solution to (2) with 𝛩𝑛𝐹+ = 0. Propagation of the modified field over
the distance between the boundary layers completes the integration
step.

The scalar FPE, most often with a constraint on the range of prop-
agation angles when it is referred to as the parabolic wave equation
(PWE), has been used extensively (W.Kiang and Liu, 1985; Wagen and
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Yeh, 1985; Carrano et al., 2011). The deleterious effects of scintilla-
tion on beacon satellite communication, surveillance, and positioning
systems have motivated much of the research (Knepp, 2004; Carrano
et al., 2012; Jiao et al., 2018). More recently, ionospheric propagation
at HF has been analyzed using FPE simulations (Hocke and Igarashi,
2003; Carrano et al., 2020). The simulations include surface reflections
and show good agreement with ray tracing.

A complete treatment of HF propagation must include polariza-
tion dependence. This has been achieved with numerical simulations
that exploited rapidly evolving computation capabilities (Wagen and
Yeh, 1985). A time-domain frequency-domain method was demon-
strated by Nickisch and M.Franke (1996). A vector PWE solution was
demonstrated by Brent et al. (1990). The Brent et al. (1990) solution
exploits the separation of propagation and media-interaction contri-
butions. Characteristic modes are not considered explicitly in these
analyses. Our development identifies a transition from propagation
in uniform media, which supports only two eigenvector modes, to
propagation in an inhomogeneous medium, which is unconstrained a
priori.

2. The vector FPE

The derivation of the vector FPE draws heavily on material in
Chapter 7 of Waves and Fields in Inhomogeneous Media (Chew, 1990).
However, all the applications follow from the principal result (26). For
a first reading Section 2.1 can be skipped.

2.1. FPE development from Maxwell’s equations

The following time-harmonic form of Maxwell’s equations charac-
terize ionospheric propagation at frequencies above 3 MHz.

∇ × 𝐄 = −𝑖𝜔𝐁 (3)
∇ ×𝐇 = 𝑖𝜔𝐃 (4)

𝐁 = 𝜇0𝐇 (5)
𝐃 = 𝜖0𝜖 ⋅ 𝐄 (6)

The fields 𝐃 and 𝐁 are measured in flux units. The fields 𝐄 and 𝐇
represent electric and magnetic field intensities, respectively. The terms
𝜇0 and 𝜖0 are fundamental constants such that

𝑐 = 1∕
√

𝜇0𝜖0 (7)

is the vacuum velocity of light. Radio frequency and angular frequency
are related as 𝑓 = 2𝜋𝜔. The dielectric tensor, 𝜖, is defined as

𝜖 = 𝐼 +𝑋𝜒, (8)

where 𝐼 is the identity matrix and 𝑋𝜒 is the susceptibility matrix,
hich is written as a product of a spatially varying scalar and a
× 3 tensor. Several seminal textbooks, e.g. Budden (1985), Yeh and

iu (1961), and Davies (1996), present calculations of the suscep-
ibility matrix. The Appendix to this paper summarizes the results
ogether with a procedure for calculating the ordinary (𝑂) and extraor-
inary (𝑋) characteristic modes that propagate in a uniform anisotropic
onosphere.

The vector wave equation is obtained by eliminating 𝐁 and 𝐇:

∇ × ∇ × 𝐄 + 𝜔2∕𝑐2𝜖𝐄 = 0. (9)

pplying the identity

∇ × ∇ × 𝐄 = ∇2𝐄 − ∇ (∇ ⋅ 𝐄) , (10)

uts the wave equation in its more familiar form
2𝐄 + 𝜔2∕𝑐2𝜖𝐄 = ∇ (∇ ⋅ 𝐄) . (11)

Whereas ∇ ⋅ 𝐃 = 𝟎 and ∇ ⋅ 𝐁 = 𝟎 follow from (3) and (4), the ∇ (∇ ⋅ 𝐄)
erm is finite but usually neglected on the basis that the structure does
2

ot induce steep gradients. In this development we assume that the
agnetic field is uniform, whereby the variation of the dielectric tensor

s confined to the scalar multiplier 𝑋. From the Appendix,

=
(

𝜔𝑝∕𝜔
)2 , (12)

where 𝜔𝑝 is the electron plasma frequency. For propagation calculations
the vector homogeneous wave equation is written as

∇2𝐄 + 𝑘2(𝐼 +𝑋𝜒)𝐄 = 0. (13)

To pursue the identification of characteristic modes, we let

𝑋 = 𝑋0 + 𝛥𝑋, (14)

where 𝑋0 is spatially invariant. Proceeding formally, the free-space
dyadic Green function is used to convert (13) to the equivalent integral
representation

𝐄(𝐫) = 𝐄0(𝐫) + 𝑘2𝑋0𝜒 ∫ ∫ ∫ 𝐄(𝐫′)

× [𝐈 + (1∕𝑘)2 ∇∇]𝐺(|
|

𝐫 − 𝐫′|
|

)𝑑𝐫′

+ 𝑘2𝜒 ∫ ∫ ∫ 𝛥𝑋(𝐫′)𝐄(𝐫′)

× [𝐈 + (1∕𝑘)2 ∇∇]𝐺(|
|

𝐫 − 𝐫′|
|

)𝑑𝐫′, (15)

here 𝐄0(𝐫) is a solution to the free-space wave equation, and

(|
|

𝐫 − 𝐫′|
|

) =
exp{𝑖𝑘 |

|

𝐫 − 𝐫′|
|

}
4𝜋 |𝐫 − 𝐫′|

. (16)

To identify the leading terms following the equal sign, we make the
following observation. If 𝛥𝑋(𝐫) = 0, 𝐄(𝐫) must be a solution to the
characteristic equation, namely a superposition of characteristic modes.
It follows that

𝐄𝑐 (𝐫) = 𝐄0(𝐫) + 𝑘2𝑋0𝜒 ∫ ∫ ∫ 𝐄(𝐫′)

× [𝐈 + (1∕𝑘)2 ∇∇]𝐺(|
|

𝐫 − 𝐫′|
|

)𝑑𝐫′. (17)

With this equivalence, the development of the vector FPE follows
he development of the scalar FPE in Rino and Kruger (2001). The
ollowing Weyl decomposition expresses the scalar Green function as
summation of plane waves

(|
|

𝐫 − 𝐫′|
|

) = 2𝑖∫ ∫
exp{𝑖𝑘𝑔(𝜅) |

|

𝑧 − 𝑧′|
|

}
𝑘𝑔(𝜅)

× exp{𝑖 ⃖⃗𝜅 ⋅
(

⃖⃗𝜂 − ⃖⃗𝜂′
)

} 𝑑 ⃖⃗𝜅
(2𝜋)2

. (18)

The free-space wave vector is defined as

𝐤 = [ ⃖⃗𝜅, 𝑔(𝜅)], (19)

where

𝑘𝑧 = 𝑘𝑔(𝜅)

𝑔(𝜅) =
√

1 − (𝜅∕𝑘)2. (20)

Substituting (17) and (18) into (15) and evaluating the Fourier in-
tegrations leads to the following spatial Fourier domain representation:

�̂�( ⃖⃗𝜅; 𝑧) = �̂�𝑐 ( ⃖⃗𝜅; 𝑧 + 𝑧′) + 2𝑖𝑘[𝐈 − 𝐬𝐬]

⋅ ∫ �̂�( ⃖⃗𝜅; 𝑧′)
exp{𝑖𝑘𝑔(𝜅) |

|

𝑧 − 𝑧′|
|

}
𝑔(𝜅)

𝑑𝑧′ (21)

where �̂�( ⃖⃗𝜅; 𝑧) is the spatial Fourier transform of the product 𝛥𝑋( ⃖⃗𝜂, 𝑧)𝜒
𝐄( ⃖⃗𝜂, 𝑧). The forward and backward propagating components can be
dentified by partitioning the integral over 𝑧′ to isolate the respective
ources:

̂+( ⃖⃗𝜅; 𝑧) = �̂�𝑐 ( ⃖⃗𝜅; 𝑧 + 𝑧′) + 2𝑖𝑘[𝐈 − 𝐬𝐬]

⋅
𝑧
�̂�( ⃖⃗𝜅; 𝑧′)

exp{𝑖𝑘𝑔(𝜅)
(

𝑧 − 𝑧′
)

}
𝑑𝑧′
∫−∞ 𝑔(𝜅)
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�̂�−( ⃖⃗𝜅; 𝑧) = 2𝑖𝑘[𝐈 − 𝐬𝐬]

⋅ ∫

∞

𝑧
�̂�(𝜅; 𝑧′)

exp{𝑖𝑘𝑔(𝜅)
(

𝑧′ − 𝑧
)

}
𝑔(𝜅)

𝑑𝑧′. (22)

onverting the incremental equations to differential form leads to the
ollowing coupled differential equations

𝜕�̂�±( ⃖⃗𝜅; 𝑧)
𝜕𝑧

= 𝑖𝑘𝛩𝑐�̂�±( ⃖⃗𝜅; 𝑧)

+ 2𝑖𝑘[𝐈 − 𝐬𝐬] ⋅ �̂�( ⃖⃗𝜅; 𝑧)∕𝑔(𝜅). (23)

The contributions of the integral terms are obtained by direct integra-
tion. The characteristic mode propagator will be developed in detail
below.

Whereas the FPE formulation is exact except for the neglect of back-
ward propagating waves, transformation to spatial-domain equations
requires evaluation of the integral

∬
2𝑖𝑘
𝑔(𝜅)

[𝐈 − 𝐬𝐬] ⋅ �̂�( ⃖⃗𝜅; 𝑧) exp{𝑖 ⃖⃗𝜅 ⋅ ⃖⃗𝜂} 𝑑 ⃖⃗𝜅′

(2𝜋)2

= 𝑘2 ∬ 𝑆( ⃖⃗𝜂 − ⃖⃗𝜂)[𝐈 + 1
𝑘2

∇∇]𝐺(|
|

⃖⃗𝜂 − ⃖⃗𝜂′|
|

)𝑑⃖⃗𝜂′ (24)

We note that

∬ 𝐺(|
|

⃖⃗𝜂 − ⃖⃗𝜂′|
|

)𝑑⃖⃗𝜂′ = 𝑖∕ (2𝑘) . (25)

We assume that the variation of 𝐒( ⃖⃗𝜂 − ⃖⃗𝜂′) is such that the source term
can be taken outside the integral. With this assumption (24) can be
replaced with ≃ 𝑖 𝑘2𝐒( ⃖⃗𝜂, 𝑧). A vector FPE can be written as follows:

𝜕𝐄( ⃖⃗𝜂, 𝑧)
𝜕𝑧

= 𝛩𝑐𝐄( ⃖⃗𝜂, 𝑧) + 𝑖
𝑘
2
𝛥𝑋( ⃖⃗𝜂, 𝑧)𝜒𝐄( ⃖⃗𝜂, 𝑧). (26)

where

𝛩𝑐𝐄( ⃖⃗𝜂, 𝑧) = ∫ ∫ �̂�( ⃖⃗𝜅, 𝑧) exp{𝑖𝑘𝑛0𝑔(𝜅)𝛥𝑧}

× exp{𝑖 ⃖⃗𝜅 ⋅ ⃖⃗𝜂} 𝑑 ⃖⃗𝜅
(2𝜋)2

(27)

If 𝛥𝑋( ⃖⃗𝜂, 𝑧) = 0, the propagation operator characterizes propagation in
homogeneous anisotropic background medium. This is the only case

or which 𝑛0 ≠ 1. We will show that in a structured medium 𝑛0 = 1, in
hich case the 𝑐 subscript is omitted.

The vector FPE is fully three-dimensional. However, for computa-
ional efficiency, the vector FPE will only be considered in its two-
imensional form with ⃖⃗𝜂 replaced by 𝑦.

.2. Characteristic mode propagation

From the summary in the Appendix, propagation in a uniform
edium is constrained to two characteristic modes. Each characteristic
ode has the form

(𝑦, 𝑧) = �̂� exp{𝑖𝑘𝑛𝑀𝑝 𝑠𝑧𝑧}

× exp{𝑖𝑘𝑛𝑀𝑝 𝑠𝑦𝑦}⃖⃗𝜖
𝑀 , (28)

here 𝑀 denotes 𝑂 or 𝑋. The wave vector that formally identifies each
patial Fourier mode is

𝑛𝑀𝑝 =
[

0, 𝑛𝑀𝑝 𝜅𝑦, 𝑘𝑛
𝑀
𝑝

√

1 − (𝜅𝑦∕𝑘)2
]

. (29)

It follows from the linearity of the homogeneous vector wave equation
that

𝛩𝐄𝑀 (𝑦, 𝑧) = ∫ �̂�𝑀 (𝜅𝑦, 𝑧0)⃖⃗𝜖𝑀 (𝜙) exp{𝑖𝑘𝑛𝑀𝑝 (𝜙)
√

1 − (𝜅𝑦∕𝑘)2|𝑧 − 𝑧|}

× exp{𝑖𝑛𝑀𝑝 (𝜙)𝜅𝑦𝑦}
𝑑𝜅𝑦
2𝜋

, (30)

where 𝜙 is the angle between the propagation vector and the magnetic
field. The variable change, 𝜇 = 𝜅𝑛𝑝𝑀 (𝜙), will transform the relation to
a form than can be evaluated as a Fourier transformation

𝛩𝐄𝑀 (𝑦, 𝑧) = 1
𝑀 ∫ �̂�𝑀 (𝜇, 𝑧0)⃖⃗𝜖𝑀 (𝜙)
3

𝑛𝑝
× exp{𝑖𝑘𝑛𝑀𝑝 (𝜙)
√

1 − (𝜇∕(𝑛𝑀𝑝 (𝜙)𝑘)2)|𝑧 − 𝑧|}

× exp{𝑖𝜇𝑦}
𝑑𝜇
2𝜋
. (31)

The eigenvectors have the form

⃖⃗𝜖𝑀 (𝜙) =

⎛

⎜

⎜

⎜

⎝

1

1∕𝑅𝑀 (𝜙)

𝑄𝑀 (𝜙)

⎞

⎟

⎟

⎟

⎠

. (32)

The components are indexed by 𝜙 because of the way they are com-
puted. The definition of the susceptibility matrix depends only on the
direction of the magnetic field. However, the computation of the char-
acteristic modes imposes constraints determined by the propagation
vector direction.

By confining the magnetic field and the propagation vector to a
common plane, the Appleton–Hartree equations, (A.13), (A.14), and
(A.15) define the eigenvectors in terms of a single angle measured from
the magnetic field to the propagation vector direction. The relation
between propagation vector components and the 𝜙 angle follows the
standard Fourier-transform sampling of 𝑦 and 𝜇:

𝜇𝑛 = 2𝜋𝑛∕(𝑁𝑑𝑦) (33)
cos𝜙𝑛 = 2𝜋𝜇𝑀𝑛 ∕(𝑁𝑑𝑦). (34)

2.3. Split-step integration

With 𝛥𝑋(𝑦, 𝑧) = 0, (26) characterizes HF propagation in a uniform
medium or a medium with 𝑦 invariant structure that varies slowly with
𝑧. However, neither the field interacting with the inhomogeneous struc-
ture nor the result, 𝛥𝑋(𝑦, 𝑧)𝜒𝐄(𝑦, 𝑧), is constrained to be a superposition
of characteristic modes. It follows that the only consistent form of the
FPE with 𝛥𝑋 finite is
𝜕𝐄(𝑦, 𝑧)
𝜕𝑧

= 𝛩𝐄(𝑦, 𝑧) + 𝑖 𝑘
2
𝛥𝑋(𝑦, 𝑧)𝜒𝐄(𝑦, 𝑧). (35)

where

𝛩𝐄(𝑦, 𝑧) = ∫ �̂�(𝜅𝑦; 𝑧0) exp{𝑖𝑘𝑔(𝜅𝑦) ||𝑧 − 𝑧0||}

× exp{𝑖𝜅𝑦𝑦}
𝑑𝜅𝑦
2𝜋

(36)

If the derivation had started with 𝑋0 = 0, this result would follow.
To demonstrate consistency we consider the zero magnetic field limit,
𝑋 = 1 − 𝑛2𝑝 and 𝜒 = 𝐼 . With 𝑛𝑝 ≃ 1 − 𝛥𝑛𝑝, it follows that 𝛥𝑋∕2 ≃ 𝛥𝑛𝑝,
which shows that the scalar FPE is a special case of the vector FPE when
the external magnetic field effects are negligible. The only constraint
on the magnitude of 𝛥𝑋 is that 𝛥𝑋 < 1, which is ensured by operation
below the electron plasma critical frequency.

Accepting (35) and (36) as defining relations, the FPE integration
cycle is initiated with a computation of the interaction of the field
with the structure between two defining planes separated by 𝑑𝑧. This is
achieved by solving the FPE with the propagation operator neglected:
𝜕𝐄(𝑦, 𝑧)
𝜕𝑧

= 𝑖 𝑘
2
𝛥𝑋(𝑦, 𝑧)𝜒𝐄(𝑦, 𝑧), (37)

With the diagonal decomposition

𝜒 = 𝑉
−1
𝐷𝑉 , (38)

which is guaranteed by the structure of 𝜒 , the media-interaction con-
tribution is reduced to three uncoupled equations,

𝜕𝑉 𝐄(𝑦, 𝑧)
𝜕𝑧

= 𝑖 𝑘
2
𝛥𝑋(𝑦, 𝑧)𝐷𝑉 𝐄(𝑦, 𝑧) (39)

The solution is

𝐄𝜒 (𝑦, 𝑧) = 𝑉
−1

exp{𝑖 𝑘𝛥𝑋(𝑦, 𝑧)𝐷𝛥𝑧}𝑉 𝐄(𝑦, 𝑧). (40)

2
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Fig. 1. Eigenvector components versus fractional spatial wavenumber at 10 MHz with 𝜙𝐵 = 90◦ (field aligned) and 𝜙𝐵 = 45◦. The upper frames shows 𝑛𝑝 for each mode. The
center and lower frames show the imaginary (non-zero) components of 𝑅′ and 𝑄, respectively.
The notation 𝐄𝜒 distinguishes the field as an intermediate result to be
propagated over the distance between the defining 𝑧-planes.

The remainder of the paper presents examples illustrating HF vector
propagation in uniform, layered, and fully inhomogeneous media.

2.4. Vector FPE simulation examples

A simulation space is defined by the sampled vertical and propa-
gation distances 𝑦𝑛 and 𝑧𝑛. The fixed propagation and magnetic field
vectors are defined by their polar angles in the 𝑥𝑦𝑧 system. For two-
dimensional simulations both vectors are confined to the 𝑦𝑧 plane,
whereby 𝜙𝑝, 𝜙𝐵 are measured from the 𝑦 axis with 𝜃𝑝 = 𝜃𝐵 = 0.
The defining eigenvector Eqs. (A.13), (A.14), and (A.15) depend on
the angles 𝜙𝑛 = 𝜙𝑝𝑛 − 𝜋∕2, which are in turn defined by the spatial
wavenumbers

𝜅𝑦𝑛 =
(

−𝑁𝑦∕2,−𝑁𝑦∕2 + 1,… , 𝑁𝑦∕2 − 1
)

∕(𝑁𝑦𝛥𝑦)

𝜙𝑝𝑛 = arccos(𝜅𝑦𝑛). (41)

Our initial examples are intended to represent boundary-free propa-
gation. Edge effects are suppressed by tapering the fields to zero at the
upper and lower boundaries. A 500 km by 300 km data space is used
in anticipation of applications to ionospheric propagation over typical
HF propagation distances. Plane-wave (modal) illumination is used for
scalar simulations. This implies a source at very large distances. For HF
simulations a focused beam can be approximated with an appropriate
phase distribution.

The first examples illustrate mode-dependent propagation in a uni-
form background. Fig. 1 summarizes the spatial-frequency-dependent
𝑂 and 𝑋 eigenvector components for field-aligned propagation (left
frames) and oblique propagation at 45◦ with respect to the magnetic
4

field (right frames). With broadside field-aligned illumination, the 𝑦
field components are equal with 90◦ phase shifts. The 𝑧 components
cancel. These are the conditions for Faraday rotation of the combined
linear polarization vector at the Faraday rotation rate

𝐹𝑅 = 𝑘(𝑛𝑂𝑝 − 𝑛𝑋𝑝 )∕2. (42)

Changing the magnetic field direction modifies the Faraday rota-
tion mainly by significantly increasing the rotation rate. Increased 𝑧
sampling was required to resolve the Faraday rotation. The 𝑦 sam-
pling is dictated by the spatial wavenumber extent of the propagating
field components. Because of the lower frequencies the sampling re-
quirements for diffraction are less demanding than higher frequency
simulations were polarization effects are negligible.

Fig. 2 shows color displays of the intensities of the combined
𝑂 and 𝑋 mode field components for field-aligned (left frame) and
oblique(right frame) orientations. One can show that the modulations
of the 𝐸𝑥 and 𝐸𝑦 vary with frequencies equal to twice the Faraday
rotation rate and a 90◦ phase difference. Fig. 3 shows the mode
intensity (upper frame) and the measured frequency of the Faraday
modulation of the 𝐸𝑦 component for the oblique propagation (lower
frame). Section 4.5 of Budden (1985) discusses energy propagation in
the ionosphere, which involves all three field components. Moreover,
the direction of energy propagation need not coincide with the direc-
tion of propagation. However, the energy flow is constrained by the
incident energy. For this particular example the total polarization field
intensity is conserved. Stored energy can reduce the total polarization
field intensity. Fully capturing the Faraday frequency is a resolution
issue. That is, the propagation steps must resolve the modulation
frequency. In Fig. 3 the frequency is slightly underestimated. For the
parallel field example 𝑁𝑦 = 8196 with 𝑁𝑧 = 4096. For the oblique
example 𝑁 = 16 384.
𝑧
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Fig. 2. Color dB intensity displays of 𝐸𝑥 (upper), 𝐸𝑦 (middle), and 𝐸𝑧 (lower) components of the combined mode fields at 10 MHz for the field-aligned (left frames) and oblique
geometries (right frames). The displayed range is −40 (dark to light blue) to 0 dB (black to red).

Fig. 3. The upper frame verifies the per mode total field intensity. The lower frame is the periodogram of the combined 𝑂 and 𝑋 intensity of the 𝐸𝑦 field component for the
𝜙𝐵 = 45◦ magnetic field orientation. Red pentagrams show twice the Faraday rate as defined by (42).
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Fig. 4. Electron density (1∕𝑚3) with mean 𝑧 variation.

To introduce varying electron density Fig. 4 shows an environment
with a varying mean but no other variation. It is common in such
situations to use a layer approximation, which is effectively built into
the FPE propagation operator. Fig. 5 shows the variation of the com-
bined field components. The Faraday frequency increases and decreases
as expected. Faraday rotation has been used extensively as a diagnos-
tic (Davies, 1980). Knowing the magnetic field direction a measurement
of the local Faraday rotation rate can be used to compute the path-
integrated electron content. The example illustrates the principle. No
attempt was made to extract the path-integrated intensity.

Fig. 6 shows a two-dimensional gaussian density variation. The
varying mean electron density variation used in the previous example
was derived by integrating the density variation shown in Fig. 6 over
𝑦. Structure contributing to each integration step is uniform. However,
at each integration step the locally uniform structure was allowed to
6

vary from step to step. The current example is the first vector FPE
application that incorporates the media interaction term.

Fig. 7 shows the vector FPE computation of the field components.
Whereas the field components shown in Fig. 7 are computed directly,
the results shown in Fig. 5 are summations of independently propagated
characteristic modes. The gaussian enhancement acts as a divergent
lens, which expands the beam. The large 𝐸𝑧 component generated by
the vector field interacting with 𝛥𝑋(𝑦, 𝑧)𝜒𝐄(𝑦, 𝑧) does not directly affect
the 𝐄×𝐇 time-averaged Poynting flux, which is conserved in the calcu-
lation, less the energy that is removed by the field taper. Polarization
as defined by the 𝐸𝑥 and 𝐸𝑦 field components is very similar to the
polarization generated by combining independently propagating 𝑂 and
𝑋 modes, which might be expected because the 𝜒 is central to the
computation of the characteristic modes.

Fig. 8 shows a Chapman layer, which has been adjusted to refract
the upward propagating beam at 10 MHz. The absorbing surface bound-
ary layer is retained to emphasize the vector FPE solution. Surface
reflections and propagation over representative earth boundaries will
be treated in a separate paper. Fig. 9 shows the progression of the field
components. The appearance of a finite 𝐸𝑧 component, the modulation
of the field component intensities, and the splitting of the refracted
beam are caused by the background magnetic field. This is illustrated
in Fig. 10, which shows the same simulation with the magnetic field set
equal to zero. The two identical field components would be obtained
with the scalar FPE.

We expect the structure induced by the magnetic field to be com-
prised of two near circularly polarized components. Circularly polar-
ized components can be isolated with appropriate combinations of the
observable 𝐸𝑥 and 𝐸𝑦 field components. The simulations are performed
in a rectangular coordinate system representative of horizontal and
vertical field measurements. The refracted fields are propagating at
comparatively small incidence angles, which are exaggerated in the
displays. Thus, we expect linear combinations of the simulated 𝐸𝑥 and
𝐸𝑦 field components to be representative of polarized refracted beam
components.

The simulation was initiated with circular polarization, whereas
most HF antenna systems transmit linear horizontal or vertical po-
larization. The only impact this has on measured field components
Fig. 5. Color intensity displays of 𝐸𝑥, 𝐸𝑦, and 𝐸𝑧 components of the combined mode fields for the simulation space shown in Fig. 4.
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Fig. 6. Color display of a gaussian 𝑁𝑒(𝑦, 𝑧) (1∕𝑚3) variation.

is phase reversals. If circular polarization is transmitted, adding and
subtracting the measured field components should isolate circularly
polarized components. If linear polarization is transmitted, adding and
subtracting measured field components with phase reversals produces
the same result. Fig. 11 shows the intensity of the added (upper frame)
and subtracted (lower frame) field intensities. The modes are isolated
with the intensity modulation almost entirely removed.

3. Summary and future applications

The main purpose of this paper was to develop a vector FPE for
HF propagation and demonstrate a split-step solution. We found that
two versions of the FPE were needed to accommodate propagation
in anisotropic media fully. Under conditions of strict homogeneity,
only linear combinations of ordinary and extraordinary modes are
7

Fig. 8. Chapman layer variation for oblique upward propagation.

supported. Summations of characteristic modes are also supported in
two-dimensional media with no variation perpendicular to the propa-
gation direction (Fig. 5). For unconstrained inhomogeneous structure
there is no prior constraint on the perturbation fields induced by the
dielectric tensor. However, Fermat’s principle does constrain evolving
field structure. We demonstrated that unconstrained FPE solutions to
the classic problem of HF refraction by an ionospheric layer gener-
ates circularly polarized components that retain the characteristics of
ordinary and extraordinary modes.

The results are encouraging, particularly in light of computational
efficiency. All results show in this paper can be reproduced in minutes
with high-end personal computers. Sampling adequacy can be verified
with straightforward consistency checks. Moreover, the results are
readily extended to accommodate curved earth, reflecting boundaries,
Fig. 7. Color intensity displays of 𝐸𝑥, 𝐸𝑦, and 𝐸𝑧 components of the FPE split-step propagation the electron density profile shown in Fig. 6.



Journal of Atmospheric and Solar-Terrestrial Physics 215 (2021) 105558C.L. Rino and C.S. Carrano
Fig. 9. Color intensity displays of 𝐸𝑥, 𝐸𝑦, and 𝐸𝑧 refracted by Chapman layer shown in Fig. 8.
Fig. 10. Color intensity displays of 𝐸𝑥, 𝐸𝑦, and 𝐸𝑧 refracted by Chapman layer with zero magnetic field shown in Fig. 8.
and ionospheric structure. We believe the three-dimensional develop-
ment to be rigorous, but approximations were introduced to implement
split-step solutions. Comparisons of the simulations with standard HF
analysis procedures for layered media and ray tracing will be pursued.
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Appendix. Susceptibility matrix and characteristic modes

The susceptibility tensor as defined Equation (4.5.11) of Yeh and
Liu (1961) can be written as 𝑋𝜒 where
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Fig. 11. Color intensity displays of 𝐸𝑥 + 𝐸𝑦 intensity (upper frame) and 𝐸𝑥 − 𝐸𝑦 field components (lower frame).
𝜒 = − 1
1 − 𝑌 2

(A.1)

×

⎡

⎢

⎢

⎢

⎣

1 − 𝑌 2
𝑥 −𝑌𝑥𝑌𝑦 + 𝑖𝑌𝑧 −𝑌𝑥𝑌𝑧 − 𝑖𝑦

−𝑌𝑥𝑌𝑦 − 𝑖𝑌𝑧 1 − 𝑌 2
𝑦 −𝑌𝑦𝑌𝑧 + 𝑖𝑌𝑥

−𝑌𝑥𝑌𝑧 + 𝑖𝑌𝑦 −𝑌𝑦𝑌𝑧 − 𝑖𝑌𝑥 1 − 𝑌 2
𝑧

⎤

⎥

⎥

⎥

⎦

,

and

𝑋 = 𝜔2
𝑝∕𝜔

2 (A.2)

𝐘 = 𝝎𝐵∕𝜔 (A.3)
𝜔2
𝑝 = 𝑁2

𝑒 ∕
(

𝑚𝑒𝜖0
)

Plasma frequency (A.4)

𝝎𝐵 = −(𝑒∕𝑚𝑒)𝐁0 Gyro frequency. (A.5)

For completeness

𝑋 = 𝜔2
𝑝∕𝜔

2

= 4𝜋𝑁𝑒𝑟𝑒∕𝑘2

𝑟𝑒 = 1
4𝜋𝜖0

𝑒2

𝑚𝑒𝑐2
. (A.6)

Aside from fundamental constants, the susceptibility matrix is defined
by 𝑁𝑒, 𝜔, and the magnetic field vector

𝐁 = 𝐵𝐮𝐵 (A.7)
𝐮𝐵 = [cos 𝜃𝐵 , sin 𝜃𝐵 cos𝜙𝐵 , sin 𝜃𝐵 sin𝜙𝐵]. (A.8)

The procedure for calculating the characteristic modes assumes
that 𝐄, 𝐁, and 𝐃 vary as exp{𝑖

(

𝜔𝑡 − 𝑘𝑛𝑝𝐬 ⋅ 𝐫
)

}. Substituting 𝐄, 𝐁, and
𝐃 into the time-harmonic forms of Maxwell’s equations leads to the
characteristic equations

𝐃 ⋅ �̂� = 0
[

𝑛2𝑝
(

𝐼 − 𝐬𝐬
)

−𝑋
(

𝐼 + 𝜒
)]

�̂� = 0. (A.9)

The characteristic equation has non trivial solutions if and only if the
determinant of the matrix multiplying 𝐄 in (A.9) is zero. Upon calcu-
lating 𝑛 , the relation 𝐃 = 0 can be used to calculate the eigenvectors.
9

𝑝

Alternatively, the eigenvector equations
[

𝐼 +𝑋𝜒−1(𝐼 − 𝐬𝐬)
]

𝐄 = (1∕𝑛2𝑝)𝐄 (A.10)

can be solved directly. Either way, there are only two eigenvectors,
[

1, 𝑅𝑀 (𝜅), 𝑄𝑀 (𝜅)
]

(A.11)

designated by standard identifiers 𝑀 ← 𝑂 or 𝑀 ← 𝑋. Following the
same angle definitions the propagation vector can be written as

𝐬 = [cos 𝜃𝑝, sin 𝜃𝑝 cos𝜙𝑝, sin 𝜃𝑝 sin𝜙𝑝]. (A.12)

For numerical implementation of vector split-step FPE integration only
two-dimensional propagation will be used. This constrains the propa-
gation vector to the 𝑦𝑧, plane following our introduction of the 𝑧 axis
as the propagation reference, whereby 𝜃𝑝 = 𝜋∕2. The propagation angle
that defines 𝜅 is 𝜙𝑝 measured from the 𝑦 axis. Confining the magnetic
field to the 𝑦𝑧 plane supports two-dimensional structure realizations.
However, aligning the magnetic field with the 𝑥 axis also supports
two-dimensional realizations.

Choosing the 𝑧 axis as the propagation reference with no con-
straint on the direction of the propagation vector is more general.
However, significant algebraic simplification is realized by aligning
the propagation vector with the 𝑧 axis. The same simplification is
realized for computation of the HF characteristic modes. Following the
procedures just described with 𝜙𝑝 = 𝜋∕2 reproduces the Appleton–
Hartree equations (4.14.23), (4.14.21), and (4.14.22) in Yeh and Liu
(1961):

𝑛2𝑝(𝜙) = 1 − 𝑋

1 − 𝑌 2 sin2(𝜙)
2(1−𝑋) ±

(

𝑌 4 sin4(𝜙)
4(1−𝑋)2 + 𝑌 2 cos2(𝜙)

)1∕2
(A.13)

𝑅(𝜙) = 𝐸𝑥∕𝐸𝑦

= 𝑖
cos(𝜙)

[

𝑌 sin2(𝜙)
2(1 −𝑋)

∓
(

𝑌 2 sin4(𝜙)
4(1 −𝑋)2

+ cos2(𝜙)
)1∕2]

(A.14)

𝑄(𝜙) = 𝐸𝑧∕𝐸𝑥
= 𝑖𝑌 sin(𝜙)(1 − 𝑛2)∕(1 −𝑋) (A.15)
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where 𝜙 = 𝜙𝑝−𝜋∕2. The field ratios 𝑅 and 𝑄, and also the vector 𝑌 that
efines the susceptibility tensor, must be rotated into the computational
oordinate system. This rotation is about the 𝑥 axis by the angle 𝜙,
hich also defines the 𝑦 wavenumber component.
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