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Abstract 

The Haselgrove ray-tracing equations are derived 
directly from Maxwell's equations. Some methods for their 
solution are discussed. In particular, we look at reduced 
versions of the equations that allow fast numerical solution 
and, in some cases, analytic solution. 

1. Introduction 

It is now over 50 years since Jenifer Haselgrove 
introduced the ray-tracing equations that have become 
synonymous with her name. During this time, her equations 
have become a major tool for investigating radiowave 
propagation in the ionosphere. In the early days, such 
studies were needed because ofthe importance of ionospheric 
propagation for long-range terrestrial communications. Such 
communications take place at high frequencies (HF), and 
use the fact that radiowaves at HF (3 to 30 MHz) are 
refracted back down to the Earth by the ionosphere. However, 
with the advent of artificial satellites, ionospheric 
communication has become less important. Nevertheless, 
such communications are still an important tool for the 
military, aid agencies, and remote communities. 
Furthermore, the introduction of over-the-horizon radar 
(OTHR) has significantly increased the use of ionospheric 
propagation. The extreme demands of over-the-horizon 
radar have made it necessary to understand ionospheric 
propagation at a more refined level, and the Haselgrove 
equations have played an important part in such studies. 

Starting with the Haselgrove equations, we review 
some of the ray-tracing approaches that are available for the 
study of ionospheric propagation. In Section 2, we derive 
the Haselgrove equations directly from Maxwell's equations 
(together with some basic plasma physics). Derivations of 
the Haselgrove equations tend to use ray optics, in particular 
the Hamiltonian equations, as their starting point [1-3]. 
Section 2 attempts to start from a more fundamental position, 

Christopher J Coleman is with the School of Electrical 
and Electronic Engineering, University of Adelaide, 
Adelaide, SA 5005, Australia; 
e-mail: ccoleman@eleceng.adelaide.edu.au 

The Radio Science Bulletin No 325 (June 2008) 

and to cast the equations as part of a procedure for the 
solution of Maxwell's equations in the high-frequency 
limit. In [4], it was found that the Runge-Kutta-Fehlberg 
numerical scheme constituted a very efficient means of 
solving the Haselgrove equations, and so we include a brief 
description ofthis algorithm. Unfortunately, there still exist 
ray-tracing applications for which computer solutions to 
the Haselgrove equations are not fast enough. A particular 
case is the coordinate registration (CR) problem of over­
the-horizon radar. In the coordinate-registration problem, 
fast ray tracing is required to convert the radar range (the 
time for the radio signal to travel to the target) into the actual 
ground range. Due to the ever-changing nature of the 
ionosphere, these calculations need to be done in real time. 
Consequently, in Sections 3 to 5 we look at some 
simplifications to the Haselgrove equations that can provide 
this increased speed. In Section 3, we look at the situation 
where the background magnetic field can be regarded as 
being weak (a good approximation for most HF frequencies 
above 10 MHz). In Section 4, we look at the simplification 
that results when we totally ignore the background magnetic 
field, an approximation that can be made more respectable 
by the use of effective wave frequencies. Finally, in Section 5, 
we consider some first integrals ofthe ray-tracing equations, 
and we also consider analytic solutions that can be derived 
from these first integrals. 

2. The Haselgrove Equations 

For time-harmonic fields in a vacuum, Maxwell's 
equations yield the field equations 

where E is the time-harmonic electric field, 1 is the time­
harmonic current density, and OJ is the wave frequency. 
Within the ionospheric plasma, the motion of an electron 
satisfies 
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m~= eJi+e~llo -mv~, (2) 

where m is the electron mass, e is the electron charge, v 
is the plasma collision frequency, ~ is the electron velocity, 
and llo is the magnetic field of the Earth. The plasma 
current is given by eN ~ ,where N is the electron density, 
Thus, for a time-harmonic field, Equation (2) reduces to 

(3) 

where ~/m, X=m~/m2, I=-ello/mm, and 
m p = ..j Ni / com is the plasma frequency. In the high­
frequency limit ( m ~ 00 ), we normally assume an electric 
field of the form g = go exp ( - J f3rp ) , where go and rp 
are both slowly varying functions of position and 
f3=mJ/loco (see [5] and [6] for more information 
concerning the high-frequency approximation). Noting that 

and substituting the assumed form of solution into 
Equation (1), we find the leading order in m yields 

where 1. = 1.0 exp (- jfJrp)· From Equation (3), it follows 
that 

(5) 

The dot product of Equation (4) with V rp yields 

(6) 

Eliminating V rp- go from Equation (4) using Equation (6), 
we obtain 

Eliminating go using Equation (5), 

(V rp- V rp-I)(U 10 + JIx 10) = -x (10 - V rpV rp-10) 
(8) 

From the dot product of Equation (8) with V rp , we obtain 

- jV rp-(Ix10) = - J(V rpxI)-lo = (U - X)V rp-10 
(9) 
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Using this to eliminate V rp-10 from Equation (8), 

(UV rp- V rp- U + X)lo 

-x 
= U~X Vrp(VrpxX)-lo- JIx10 (Vrp-Vrp-l) 

(10) 

Without loss of generality, we choose 1) = Y and 
12 = 13 = 0 (i.e., the Xl coordinate direction is in the 
direction ofthe magnetic field). In this case, Equation (10) 
can be rewritten as 

(ui +x -u) jYFpjPJ - jYPAP2 

0 (ui+x-u)+ jYPP2PJ - jYFpi - jy(p2 -I) 

0 jYFd + jY(i-l) (ui + X - u)- jYFPJP2 

(11 ) 

where p=Vrp, i=p-p, and P=xj(U-X). This 
will onlyhave a nontrivial solution ifthe determinant of the 
matrix is zero, that is, 

from which either ui + X - U = 0 (in which case, go is 
parallel to r), or 

_y2 p(i-I)(i- d)=o, (13) 

for which go has no component in the direction of r. 
Returning to a general system of coordinates (NB: 
Yj1j = I- p and y2 = I- I), we obtain from Equation (13) 

that -

(14) 

Equation (14) is a first-order partial differential equation 
for the phase field, rp, and this can be solved by standard 
methods for partial differential equations. For the equation 
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F(x, p) = 0, we can define a solution in terms of 
characteristic curves (our rays). These, together with the 
values of cp along them, will satisfy the generalized Charpit 
equations (see [7], for example): 

dcp 
3 

LPjaFjapj 
j=1 

(15) 

The above equations can be used to find the ray curves 
in terms of the values of the phase factor, cp, along them. 
We will consider the collision-free case (U = I). 
Equation (14) then implies 

(i-It (1- y2 -py2)+2(i-l)x + X2 

Multiplying through by 1- X, Equation (16) can be recast 
as F(~, E) = 0, where 

F(~, EJ = (i-I t (1- X - y2) 

(l7) 

Consequently, 

= 4pj(1- X - y2 )(i-l )+2pj[ 2X(1- X)- Xy2] 

(18) 

We introduce a new parameter, t, along the 
characteristic curves defined by 

and then Equation (15), together with a rearranged version 
of Equation (18), yields 
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dXj 4 Pj ( 2 ) 2 2 -=-- l-X-y (p -1+X)-2p-Y 
dt X 1 

If we now introduce the new dependent variable 
q = (i-I)/ X (as defined in [3]), we obtain 

dXj ( 2)-2 2 -=-4p- I-X-Y (Ij +1)-2p-Y dt 1 1 

(20) 

which is the Haselgrove equation for the advancement of P 
[2]. The other equation implied by Equation (15) requires 
the coordinated derivatives of F, that is 

+(i-Ilax (2-4X-y2)-2Xr. arl 
la~ a~ 

ax ax( 2 )( )2 +X-(2-3X)+- P -I r. P 
aXj aXj -

(21) 

Introducing the same dependent and independent variables 
as for Equation (20), we obtain from Equation (15) that 

}ax 
+2-3X -

aXj 

(22) 

Equations (20) and (22) together constitute the original 
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Haselgrove equations [2]. Furthermore, recasting 
Equation (16) in terms of q [2], we obtain 

rl (I-X - y2)+ qlcre Ef +2(I-X)- y2 J+ 1- X = 0 

(23) 

from which q can be derived (note that there are two 
possible values of q, corresponding to two of the possible 
solutions to Equation (11 )). The corresponding current, 
and hence the electric field through Equation (5), can be 
obtained from the homogeneous Equations (11) using the 
calculated values of p on the ray. However, Equations (11) 
do not determine the magnitude of the field. This must be 
calculated by tracking the power out from the source. This 
can be done by tracing out ray tubes, f;nd noting that within 
these tubes, the power, Aplgl /(2170), must remain 
constant (A is the cross-sectional area of the tube). The 
magnitude of the electric field can then be calculated from 
the power. 

There remains the issue of solving the above ray­
tracing equations. Starting with some initial value, .!:!:'( 0), 
for .!:!:', the system of ordinary differential equations, 
d.!:!:'/ dt = W(.!:!:') , can be solved using Runge-Kutta 

techniques. This was suggested in the Haselgrove and 
Haselgrove paper [2]. If we start a ray at the Earth's surface, 
the initial values of p are given by the direction cosines at 
this starting point. However, the extreme variations that can 
exist in the ionosphere often make it necessary to vary the 
increment in t at each stage of the solution process, in order 
to maintain accuracy. Haselgrove and Haselgrove [2] 
suggested the introduction of a scaling to produce this 
effect, but the Runge-Kutta-Fehlberg (RKF) method (see 
[8] for example) can also achieve this. 

Consider the solution at time t and prospective 
increment M. Form the vectors iiI ' li2 , li3 , li4 , lis, and 
li6 through the process 

(24) 

(25) 

(26) 

(27) 
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(28) 

+1859li4/4104-11liS/40). (29) 

The approximate solution, .!:!:'( t) + Li.!:!:' at t + M ,is obtained 
usmg 

+ 2197 li4 /4104 - lis /5 (29) 

for the fourth-order Runge-Kutta method, and by 

for the fifth-order method. The global truncation error will 
be o( M4) for the fourth-order method and o( M S ) for 
the fifth-order method. The magnitude of the difference 
between the fourth- (.!:!:'4 ) and fifth- (.!:!:'s ) order estimates, 
Li w= I.!:!:'s - .!:!:'41 ' gives an estimate ofthe global truncation 
error in the fourth-order method. 

The Runge-Kutta-Fehlberg method proceeds by 
adjusting the step at each stage so that this global error 
remains close to a pre assigned value, liE . That is, at each 
stage we adjust Lit so that 

(31 ) 

This approach has been used in [4] to provide an efficient 
numerical implementation of the Haselgrove equations. 

3. The Weak­
Background-Field Limit 

For the collision-free case (U = 1), Equation (3) can 
be inverted to yield 
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- jOJEoX 1= 2 (g- jXxg-X- EY)· 
l-Y 

(32) 

Up until now, we have assumed that both the plasma 
frequency, w P ' and the gyro frequency, wH =Iek'ol/m, 
are of the same order as the wave frequency, w. We will 
now assume that w» w and, hence, we can ignore the 
term of second order, yt: in Equation (32). Substituting 
the trial solution g = go exp ( - j j3<p) into Equation (1), 
the j32 and j3 terms yield 

and 

(34) 

respectively. By taking the divergence of Equation (1), we 

obtain V-g= (J/WEo)V -1 ,from which and Vcp-go = 0 

for the two leading orders. Consequently, Equations (33) 
and (34) reduce to 

(35) 

and 

-V<p j3X 
--V X-Eo +--V mV m_(Yx Eo) 
I-X - I-X 't' 't' - -

From Equation (35), we obtain the ray-tracing equations 
d pi dt = V n2 /2 and d~/ dt = p, where dt = d<p/ l (i.e., 

t isthe group distance) and n2 ~ 1- X . These equations do 
not contain the background magnetic field, and hence can 
be solved far more efficiently than the original Haselgrove 
equations. Once again, the Runge-Kutta-Fehlberg method 
can be used with great effect. 

Equation (36) can now be recast as a differential 
equation for go along a ray: 

dEo dx 2 2 
2--=-+-=Vlnn -E +V mE dt dt -0 't'-O 
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[ 1 dx dx ] = j3X Yx Eo ----=-=- (Yx EO) . 
- - 1- X dt dt --

(37) 

Taking the do} product of E9uation (37) with go ' we find 
that dlgoI

2/dt+V2<plgol =0. Combining this with 
Equation (37), we obtain an equation for the polarization 
vector, E= go/Igol, of the form 

dP dx 2 
2--=+-=Vlnn -P 

dt dt 

[ I dx dx ] =j3X YxP---=-=-(YxP) 
- - 1- X dt dt --

.(38) 

Essentially, the background magnetic field manifests itself 
as arotation ofthepolarization vector abouttheray direction. 

4. The Negligible­
Background-Field Limit 

When the magnetic field of the Earth can be ignored 
(k'o = 0 ), the Haselgrove equations can be reduced to 

!!...(nd~)=vn' 
ds ds 

(39) 

where s is the distance along the ray path. The equations 
are themselves the Euler-Lagrange (EL) equations for the 
variational principle 

R 

b f n(~)ds= 0, 
T 

(40) 

i.e., Fermat's principle. Ifwenow consider the case for a ray 
path that remains in a plane, we can use a polar coordinate 
system (r, B) , and the variational Euler-Lagrange principle 
becomes 

R [ 2 ]1/2 
b[ n(r,B) (:~) +1 dB=O· (41) 

The above ray-tracing equations can be used when any 
deviations from the great-circle path (certainly the case for 
a uniform ionosphere) are negligible. Coordinate r is the 
distance from the center of the Earth, and B is an angular 
coordinate along the great-circle path. The Euler-Lagrange 
equations for the above variational principle can be reduced 
[9] to 
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and 

(43) 

where Q= n( dr/ dB)/ ~( dr/ dBi +? . We now only need 
to solve two ordinary differential equations to find a ray, a 
lot more efficient than the four equations for the planar 
Haselgrove equations. The downside is that we have ignored 
lateral deviations and the background magnetic field. Some 
measure of the background magnetic field can be 
incorporated by ray tracing at effective wave frequencies 
OJ±OJH/2 ,where OJH isthe gyro frequency atthe midpoint 
ofthe ray path (the different effective frequencies correspond 
to the two different roots of Equation (23)). (The reader 
should refer to [1 0] for more accurate expressions of effective 
frequency.) Once again, the Runge-Kutta-Fehlberg 
technique can be used to efficiently solve the ray-tracing 
equations. 

Ifwe move to a nearby ray path, the deviations (,sr 
and ,sQ) in quantities rand Q can be calculated from 

(44) 

and 

Since power flows within the confines ofthe rays emanating 
from a source, the above deviation equations are most 
useful in calculating the change in power density along a ray 
path. Lateral to the ray plane, the deviation can be estimated 
by assuming the rays to follow great-circle paths through 
the origin of the main ray. However, this approximation is 
only valid when the lateral variations in the ionosphere are 
weak. 
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5. Analytic Techniques 

Consider the variational principle for a two­
dimensional ray path in Cartesian coordinates (x, y). For 
the case where the refractive index depends only on the y 
coordinate, the variational principle becomes 

R [ 2 ]1/2 
,s[n(y) (:) +1 dx=O, (46) 

from which a standard result of variational calculus yields 
a first integral of the Euler-Lagrange equations 

\ /[ 2 ]1/2 

n(Y1 (:) +1 =C, (47) 

where C is a constant of integration. This is Snell's law for 
a horizontally stratified ionosphere, and is a single first­
order ordinary differential equation for the ray path. In the 
case of radial coordinates with the refractive index depending 
on the radial coordinate r alone, there is a first integral of 
the form nCr)? (dB/ ds) = C . This is Bouger's law, which 
is the generalization of Snell ' s law to a spherically stratified 
ionosphere (see [11 D. In [12], it was shown that important 
quantities such as ground range could be derived analytically 
in the case of an ionospheric layer with refractive index 

n=~a+fJlr+r/? for rb<r<rm+Ym' and n=O 
elsewhere. Parameters a, fi., and r are given by 
a = 1-( OJel OJ i + (rbOJel YmOJ i, fJ = 2;;; rmOJe/OJ, and 
r = (rmrbOJe I Y m OJ i ' where Y m is the thickness of the 
layer, rb is the radius of the base of the layer, rm is the 
radius of minimum refractive index, and OJe is the plasma 
frequency at this height. Such an ionospheric layer is known 
as a quasi-parabolic layer. It was shown in [12] that a ray 
launched at the surface of the Earth with an initial elevation 
¢o will land at a distance 

rE cos ¢o fJ2 - 4ar 

- 2Jr In [ I 1]2 
4r sin<P+-Jr+ r:;fJ 

rb 2\jr 

,(48) 

where cos <P = rE I rb cos <Po ' and rE is the radius of the 
Earth. Such results arguably provide the most efficient form 
of ray tracing. 
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Snell's law can be further generalized [13] to the 
following result. If, in two dimensions, the refractive index 
has the form 

n(x,y)= R(S{g(z)})Ig'(z)I' (49) 

where z= x+ jy, then the ray trajectories will satisfy 

R(S{g(z)}) d9\{g(z)} = C. (50) 

Ig'(z~ ds 

When g(z) = jln z , we obtain Bouger's law on noting that 
In z = log r+ j(} . Consider the conformal transformation 
Z = g( z), where Z = X + jY. Then, Equation (50) will 
take the form 

R(Y)(dXjdS) = C (51) 

in the new (X, Y) coordinates, with dS = Ig' (z)1 ds being 
the distance element in these new coordinates. Equation (51) 
can be integrated [9] to yield 

X+Co = f C dY· (52) 
~K (Y)- C2 

We can effectively study the propagation through an 
ionosphere defined by Equation (49) by studying 
propagation through a horizontally stratified ionosphere. 
The quasi- arabolic ionos here is obtained by introducing 
R(Y)= r+,8exp(Y)+aexp(2Y). The integration of 
Equation (2) then yields 

~{In[ 2~r- C2 Jr- C2 + ,8exp(Y)+ aexp (2Y) 

+,8 exp(Y)+ 2 (r- C2 ) ] - y}. (53) 

To obtain the ray path in polar coordinates, we choose 
g( z) = jln z, from which we note that X = -() and 
Y = In r. However, to obtain the results described in [11] 

we need to add the straight-line sections of the ray that 
connect the Earth's surface to the base of the ionosphere. 

I f we choose g( z) = jln (z- zo), instead of 
g(z) = jln z, we then obtain the eccentric ionospheres 
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discussed in [13]. Another interesting example arises when 
g(z)=[cos(a)+ jSin(a)Jz. In this case, the two­
dimensional horizontally stratified ionosphere with 
f.1 (y) = R(y) is given a tilt through angle a . 

6. Conclusion 

We have derived the Haselgrove ray-tracing equations 
directly from Maxwell's equations, and we have considered 
some methods for their numerical solution. Even with the 
fast computers of today, there are still applications for 
which the solution of the complete Haselgrove equations is 
still not fast enough. We have therefore looked at some 
simplifications that could deliver the required speed. In 
particular, we have looked at ray equations that ignore the 
background magnetic field and assume propagation to be in 
a plane. This reduces the ordinary differential equation 
system to two equations, rather than the six equations of the 
full Haselgrove formulation. For further speed increases, 
we have looked at generalizations of Snell's law and the 
analytic solutions that can be obtained from such 
generalizations. 
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