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Abstract

This report is a detailed development of stochastic TEC structure
characterization following a presentation at the February 19-21 St. Au-
gustine, Florida LWAS workshop . We �rst identify ionospheric structure
that admits quantitative stochastic structure characterization. We then
introduce a revised three-dimensional ionospheric structure model that
can be used to interpret diagnostic TEC measurements.

1 Introduction

Ionospheric structure can cause propagation disturbances that degrade the per-
formance of satellite communication, navigation, and surveillance systems. Physics-
based models are being constructed to assess and ultimately predict the struc-
ture. Quantitative characterization of the structure is an essential part of this
process. This report reviews and extends stochastic structure characteriza-
tion. Although the ionosphere is an extremely complex system, the electron
density observable, Ne(r; t), is su¢ cient for both structure characterization and
assessment of propagation e¤ects.
Large-scale slowly varying structure is the starting point. To identify large-

scale structure formally, let

Ne(r; t) = Ne(�r;�t) +DNe(�r;�t): (1)

The coordinates�r and�t are con�ned to a region of interest (ROI) centered on
reference a GPS coordinate, r0, and evolving from a reference universal time, t0.
The componentNe(�r;�t) represents a deterministic structure component that
can be characterized analytically with physics-based models. Processes that
cause systematic variations of Ne(r; t) initiate the development and evolution
of residual structure represented by DNe(�r;�t). To interpret diagnostic
measurements the ROI structure is partitioned as follows:

Ne(�r;�t) ' Ne(r0; to) + �Ne(ve¤ (t� t0)) + �Ne(�r;�t): (2)

The term�Ne represents intermediate-scale structure that evolves slowly enough
to present spatially invariant (frozen) con�gurations over typical measurement
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intervals. The term �Ne represents small-scale more rapidly varying spatially
dispersive structure.
Di¤erent diagnostic measurements emphasize di¤erent scale-size components.

Ionosondes measure Ne pro�les with comparatively coarse resolution. Spread
F is a manifestation of intermediate-scale structure, but not a quantitative
diagnostic. Similarly, coherent backscatter radars measure the Bragg wave-
length component of �Ne(�r;�t) as a time series. Backscatter time series are
processes to extract Doppler shifts, which, in turn, measure plasma motion. In-
coherent scatter exploits theoretical power spectral density (PSD) predictions to
extract electron density, composition, and ion temperature estimates. However,
incoherent scatter measurements cannot resolve intermediate-scale structure.
Only propagation diagnostics and in-situ probes provide quantitative measures
of intermediate-scale structure.
The phase of signals that propagate through disturbed regions are sensitive

to path-integrated electron density, which is referred to as total electron con-
tent (TEC). TEC is introduced as a mapping of three-dimensional ionospheric
structure onto a two-dimensional measurement plane normal to the direction of
path integration:

TEC(rs; t) =

Z L

0

Ne(r; t)ds: (3)

Upon neglecting �Ne, TEC can be separated into deterministic and stochastic
components as follows:

TEC(rs; t) = TEC(rs; t) +

Z L

0

�Ne(ve¤ (t� t0))ds: (4)

The velocity ve¤ includes the motion of the path of integration and the drift
velocity, which is usually unknown. The remainder of this report will addres
stochastic structure characterization.
It is important to note that TEC as represented by (4) applies only to subre-

gions and time intervals that support invariant drifting structure. Intermediate-
scale structure does undergo slow rearrangement, which leads to variation within
ROIs. Identifying appropriate analysis intervals to capture this variation is
part of structure characterization. Small-scale structure within an ROI is in-
trinsically spatially dispersive. Plasma waves with di¤erent scales move with
di¤erent velocities. Propagation and coherent backscatter measurements are
complementary, with causal relations yet to be determined.

2 Stochastic Structure Models

Without loss of generality, the x axis of an ROI coordinate system can be aligned
with the ray that connects the phase centers of the transmit and receive anten-
nas. Because of the large GNSS propagation distances and orbital periods, the
directions of the paths of integration are nearly invariant over typical measure-
ment intervals. Moreover, although the geometric path is not the strict path
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an interrogating electromagnetic wave follows, propagation models based on

�TEC(�) =

Z L

0

�Ne(x;�)dx: (5)

capture refraction and di¤raction.
Stochastic models of intermediate-scale ionospheric structure follow from

spectral density functions (SDFs), which are formally ensemble averages of the
intensity of Fourier decompositions of the structure. The underlying model is
three dimensional. TEC e¤ectively maps the three-dimensional structure onto
a two-dimensional observation plane. Any physical structure realization admits
the following interrelated three, two, and one-dimensional Fourier decomposi-
tions:

d�Ne (�x;�) =

Z ZZ
�Ne(x;�) exp f�i�xxg exp f�i� � �g d�dx (6)

d�Ne (�) =

Z d�Ne (�x;�)
d�x
2�

(7)

d�Ne (�y) =

ZZ d�Ne (�x; �y; �z)
d�x
2�

d�z
2�

(8)

The �y SDF is derived from a scan along the y axis. Accommodating an
arbitrary scan direction is a purely geometrical manipulation. The formal SDF
de�nition is

�
(n)
Ne
=

����d�Ne

���2� ; (9)

where n = 1; 2; or 3 indicates the dimension. The angle brackets indicate an
ensemble average. The following standard procedure is used for generating
realizations of �Ne(x;�):

�Ne(x;�) =

Z ZZ qd�Ne (�x;�)� (�x;�)

� exp fi�xxg exp fi� � �g
d�

(2�)
2

d�x
2�
; (10)

where � (�x;�) is a process with the formal white noise propertyD
� (�x;�) �

�
�
�
0

x;�
0
�E

= (2�)
2
� (�� �0)

�2��
�
�x � �

0

x

�
: (11)

One can show that SDFs of the realizations support the interrelated multidi-
mensional SDFs.
To calculate the two-dimensional Fourier decomposition of �TEC(x;�),

�Ne(x;�) in (5) is replaced with its three-dimensional Fourier representation
to obtain the equivalent representation

�TEC(x;�) =

Z "ZZ d�Ne (�x;�) exp fi� � �g
d�

(2�)
2

#
exp fi�xxg

d�x
2�
: (12)
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Computing the ensemble average of the two-dimensional Fourier transform of
(12), using the white-noise property, and evaluaing the integral over x produces
the following result

��TEC (�) = L

Z 1

�1

sin2(�xL=2)

(�xL=2)2
�Ne

(�x;�)
d�x
2�
; (13)

which is the primary relation for interpreting diagnostic stochastic TEC mea-
surements. An analytic representation of �Ne (�x;�) is needed to pursue the
rami�cations of (13), .

2.1 The Shakorofsky SDF Model

An analytic model proposed by Shakorofsky has been used extensively for isotropic
power-law processes such as Kolmogorov turbulence. The Shakorofsky model
is discussed in detail in Section 3.1.4 of Rino [1]. With a change from refractive
index units to electron density units, the three-dimensional SDF is

�Ne
(q) � Cs(q2L + q2)�(�+1=2); (14)

where qL is the outer-scale spatial wavenumber in radians per meter. The
structure function has the complementary power-law formD

(�Ne(�)��Ne(� + y))2
E
~C2ny

2��2: (15)

Asymptotic equivalence here means the variables q and y are con�ned to com-
plementary power-law ranges bounded by the outer scale or 2�=q0. There is
no formal dependence on an inner scale cuto¤ as long as the spectral index
parameter � > 1.
Structure functions are used because they mitigate trend-like departures

from strict statistical homogeneity. For example, it can be shown that

C2n =
2�(2� �)Cs

(4�)3=2(� � 1)�(� + 1=2)22��2 , (16)

which is independent of the outer scale. For Kolmogorov turbulence � =
4=3, whereby the structure constant provides a scale-independent measure of
turbulent strength. Even so, parameter estimation based on measured PSDs
provide a more general hypothesis test.
If the SDF structure contributing to (13) is decorrelated over the path dis-

tance L, �Ne
(�) ' �Ne

(0;�). It then follows that

��TEC (�) � LCs(q2L + �2)�(�+1=2); (17)

which suggests that the two-dimensional TEC structure is a direct mapping of
the three-dimensional electron density structure with one spatial wavenumber
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component set equal to zero. If the structure is correlated over distances greater
than L, the approximation

��TEC (�) ' L
Z 1

�1
�Ne

(�x;�)
d�x
2�
: (18)

is more appropriate. The di¤erences are manifest in the relation between the
in situ and one-dimensional SDF spectral index relations. One might expect a
wavelength-dependent change in the spectral index.

2.2 Anisotropy

The simplicity of the isotropic model is appealing. However, ionospheric struc-
tures are highly anisotropic. Following a procedure introduced by Richard
Singleton, anisotropy can be accommodated by replacing q with the generalized
quadratic form

q2 = qT bCq; (19)

where bC is a 3 � 3 unitary matrix characterizing a rotation from � to a �eld-
aligned system stretched along two directions represented by vectors aligned

with and normal to the magnetic �eld. The elements of bC are de�ne in
Appendix A.3 of Rino [1]. The complete TEC model depends on the parameters
LCs, �, the direction of the magnetic �eld in the reference coordinate system, a
�eld-aligned elongation factor, a, a cross-�eld elongation factor, b, and the angle
of the cross-�eld elongation plane, . Aside from the SDF dependence on qL,
Shakarofosky-Singleton is formally a two-parameter model de�ned by LCs and
�, with an implicit dependence on the direction of the magnetic �eld, elongation
ratios, and an orientation angle of the propagation path relative to the magnetic
�eld direction.

3 Con�guration-Space SDF Models

Simulations driven by propagation models are limited mainly by the �delity of
structure models. However, structure realizations based on (10) are mathemati-
cal abstractions with no direct connection to the underlying physics. Moreover,
large-scale realizations require three-dimensional Fourier decompositions over
the entire de�ning volume. In e¤ect every spectral domain sample potentially
e¤ects every point in the realization. In a recently paper, Rino et al. [2], we
proposed an alternative model that generates stochastic structure realizations
as summations of elemental �eld-aligned striations. Striations characterize the
ionization associated with individual magnetic �eld lines. A con�guration-space
realization replaces (10) with

�Ne(x;�) =
1

Ns

NsX
k=1

Ck�
k
k p?

�q�
s+ �Sk

�2
+
�
t+ �Sk

�2
=�k

�
: (20)
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The pro�le function p? (�), which is zero for � > 1 with p? (0) = 1, de�nes the
radial decay of the striation ionization or its exclusion. The parameters Ck,
�k, and k de�ne the peak intensity, Ck�

k
k , and scale �k, of the k

th striation.
The parameters �Sk and �Sk identify magnetic �eld lines from their intercept
in a �eld-aligned coordinate system with s and t measured in a plane normal
to the magnetic �eld direction. The de�ning coordinates [x;�] are transformed
into the �eld-aligned system using the same 3� 3 rotation matrix than de�nes
C with a = b = 1. This version of the con�guration-space model assumes
no variation along the �eld lines within the realization volume. To the extent
that �eld-aligned variations can be modeled, the variation be accommodated by
introducing a second �eld-aligned pro�le function. Field line curvature can also
be incorporated with magnetic-�eld-line tracing.

3.1 Con�guration Space Parameter Selection

Con�guration parameter selection requires a theoretical computation of the ex-
pectation SDF. However, because the model admits no stochastic variation
along �eld lines, stochastic structure can be characterized only in cross-�eld
planes. Consider a realization with the x axis aligned with the magnetic �eld.
A formal calculation of the multi-dimensional SDF will show that

��Ne(�x;�) =
1

Ns

JX
j=1

Nj�
2j+(2�"(n))
j C

(n)
j Q(n)(�x;�;�j) (21)

Q(n)(�x;�;�j) =

����Z � � �
Z
p?

�p
s2 + t2=�j

�
expf�i (x�x + � � �)gdyd�j2 ; (22)

where "(n) is a correction that will be discussed shortly. The derivation of
(21) and (22) follows the development in Rino et al. [2], where only the one-
dimensional SDF was used. From (21), SDFs are de�ned by the parameters J ,
Nj , �j , j , and Cj . The parameters J and Nj partition the striations into J
groups of Nj striations, whereby

Ns =
JX
j=1

Nj : (23)

A de�ning relation is most readily established by using the measurable one-
dimensional SDF

��Ne(�y) =
1

Ns

JX
j=1

Nj�
2j+�(1)

j CjQ
(1)(�y;�j) (24)

Q(1)(�y; �j) =

����Z p?

�p
s2 + t2=�k

�
expf�iy�ygdy

����2 : (25)
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Realizations are constrained to approximate one-dimensional target SDFs of the
form

��Ne
(�y) = Cp

�
�
��1
y for �y � �0
�
�2��1
0 �

��2
y for �y > �0

: (26)

This is achieved by imposing the following bifurcation rule:

�j = �max2
�(Jmax�j) j = 1; 2; � � � Jmax (27)

Nj = 2d�Jmax (28)

Bifurcation means that each new scale is half the next larger scale. We �nd
that with �(1) = 1, the desired expectation SDF is realized with

�1;2 = 21;2 + 2: (29)

The index subscript refers to the large-scale, �y � �0, and small-scale, �y > �0,
spatial wavenumber ranges.
A speci�c realization is initiated by de�ning �max , which corresponds to the

smalles power-law wavenumber , 2�=�max . Similarly, Jmax de�nes the smallest
striation scale �1 = �max2�(Jmax�1), which corresponds to the largest power-law
spatial wavenumber, 2�=�1. Initially let d = Jmax, which assigns one striation
to bifurcation. The set of J logarithmically-spaced wavenumbers comprise a
discrete wavelet decomposition, as discussed in [3] and [4]. The Cj parameter
de�nes Cp with an adjustment at the break frequency for to maintain SDF
continuity. Figure 1 shows a comparison of a target SDF (blue) with and the
expectation SDF computed by evaluating (24) with �max = 20 km, Jmax = 10
and the remaining parameters identi�ed in the plot title.
Parameters can be adjusted to identify the smallest value of J that provides

good de�nition over the target SDF range. The departure of the expectation
SDF at the low frequency end in Figure 1 is the Fourier transform of the largest
striation, Q(1)(�y; �J). The high frequency departure is determined similarly
by Q(1)(�y; �j). If �y is small enough, the sidelobes of the smallest striation
become visible. For larger values there is some aliasing, which accounts for the
upward departure in Figure 1. The resolution, �y, determines the minimum
cross-�eld sampling in a plane normal to the magnetic �eld that will support the
SDF. The parameter d � J determines the total number of striations, which
must be large enough to provide a uniform distribution of striations threading
the ROI. The contributions from adjacent �eld lines overlap.
An overall adjustment to C(1)j has been applied to match the target SDF.

For the two-dimensional SDF we �nd that the relation

�
(1)
�Ne

(�y) =

Z
�
(2)
�Ne

(�y; �x)
d�x
2�

(30)

is realized with �(2) = 2 with a similar overall adjustment to C(2)j to maintain
full consistency. The upper frame in Figure 2 shows shows a color display of
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Figure 1: Target SDF for parameters listed in the title (blue) overlaid on the
SDF computed from (24).

�
(2)
�Ne

(�y; �z), which corresponds to �eld-aligned propagation. The blue plot

in the lower frame is obtained by integrating �(2)�Ne
(�y; �z) over �z. The red

curve is the one-dimensional SDF �(1)�Ne
(�y) shown in Figure 1 as a check on

the calculation and normalization. Although (22) provides a complete
characterization of the con�guration space structure, it is desirable to have an
analytic representation. We �nd that

��Ne(�y; �z) = C
2
s

�
��p1 for � � �0
�p2�p20 ��p2 for � > �0

; (31)

with pn = �n + 1 provides a good �t to �
(2)
�Ne

(�y; �z). This is illustrated
in Figure 3 where the where ��Ne(�) as de�ned by (31) is overlaid on the
expectation calculation. For each calculation consistent scaling is maintained
to connect the two-dimensional model C2s to the de�ning value one-dimensional
Cs value.
At this point, a one-dimensional scan of an ROI could be processed with

irregularity parameter estimation (IPE) as described in Rino and Carrano [4]
to extract the one-dimensional parameters, which can be related directly to the
two-dimensional cross-�eld de�ning relation. To interpret a stochastic TEC
measurement, (13) must be evaluated, which requires a three-dimensional SDF
model.
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Figure 2: Upper frame is two-dimensional SDF computed from (22) with n = 2.
Lower frame is calculation of one-dimensional SDF by integration (blue) overlaid
on expectation SDF (red).

Figure 3: Comparison of analytic two-dimensional model (red) from (31) with
expectation calculation from (22) with n = 2.
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3.2 Extension to Three Dimensions

Upon computing ��Ne
(�x; �y; �z) as de�ned by (21) and comparing the expec-

tation one-dimensional result () to

�
(1)
�Ne

(�y) =

ZZ
�
(3)
�Ne

(�y; �x; �z)
d�x
2�

d�z
2�
; (32)

we �nd that �(3) = 2 maintains consistency. The reason that �(3) = �(2) follows
from the calculation

Q(3)(�x;�;�j) =

����ZZ p?

�p
y2 + z2=�j

�
expf�i (y�y + z�z)gdydzj2 2��(�x): (33)

The numerical calculations approximate singular singular behavior. For ex-
ample, Figure xx show numerical evaluation of (33) with (21) substituted for
�
(3)
�Ne

(�y; �x; �z) with the one-dimensional expectation SDF overlaid. We ex-
pect that better agreement could be realized with �ner sampling, which makes
the computation time-consuming. Unfortunately there is no analytic counter-
part to (31).
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