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Abstract—The parabolic wave equation and its variants
have provided the theoretical framework for most practical
forward-propagation models. Split-step integration generates an
easily obtained, robust solution for most applications. Irregular
boundaries can be incorporated by using a conformal mapping
technique introduced by Beilis and Tappert [1] and refined by
Donohue and Kuttler [2]. In an earlier paper, we demonstrated
an alternative method that incorporates a numerical solution to
the forward boundary-integral equation within each split-step
cycle [3]. This paper compares predictions of forward propa-
gation obtained by these two distinctly different methods. The
results confirm that the PWE-based method is very accurate
for smoothly varying surfaces and that it captures the primary
forward structure even in the presence of unresolved surface
detail. The moderate loss of fidelity is often an acceptable trade
for for increased computational efficiency. There are situations,
however, where the details of the surface structure are important.
Furthermore, the induced surface currents are unique to the
forward boundary-integral method. We illustrate their use by
calculating the bistatic scatter that would be measured from
an isolated surface segment. We show that the scattered field
measured in this way can be normalized to form a bistatic scatter
function only when the illuminating beam is tilted slightly toward
the surface. We interpret this disparity as a breakdown in concept
that underlies a local scattering function.

Index Terms—Propagation, scattering.

I. INTRODUCTION

WAVE propagation in an unbounded weakly inhomoge-
neous medium can be characterized by coupled first-

order differential equations that are structurally similar to
transmission-line or waveguide mode equations. The coupled
equations individually characterize the forward-propagating
(away from the source) and the backward-propagating (toward
the source) components of the total field, although the forward
component typically carries most of the energy. The forward
approximation exploits this asymmetry by neglecting the
backward-propagating component in the forward equation. The
parabolic wave equation (PWE) and its variants are well-known
applications of the forward approximation. Their broad appeal
is largely attributable to a robust split-step recursion that gener-
ates practical solutions for most applications. Plane reflecting
boundaries are readily incorporated in the split-step framework,
but irregular surfaces present a formidable challenge.

The theory of scattering from irregular surfaces requires
the computationally demanding solution of an intermediate
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boundary integral equation (BIE). Although a transmission-line
formulation of the surface-scattering problem has been known
for some time [4], methods that exploit that structure have
been introduced only recently by Hollidayet al. [5] and by
Kapp and Brown [6]. Scattering theory has focused mainly on
methods that use recursive aggregation of scattering centers
with translation to a common reference [7], although a variant
of the forward approximation has been used to reduce the
computation burden of the fast BIE solvers [8]. Chou and
Johnson [9] used the scheme in the forward–backward method
of Holliday et al. [5] to adapt BIE solvers for large-scale
problems, but accommodating varying refractivity in a BIE
framework has been addressed only for special cases [10].
Thus, BIE methods have remained largely outside the domain
of practical forward-propagation models.

Irregular boundaries are incorporated in PWE-based models
in a totally different way. Donohue and Kuttler [2] refined a
method developed originally by Beilis and Tappert [1], but first
applied to microwave propagation models by Barrios [11]. The
Beilis–Tappert scheme effectively transforms the surface struc-
ture into a phase perturbation that is added to the refractivity
component. The manipulations require no significant increase
in computational complexity, but the approximations used to re-
formulate the transformed propagation equations impose some
restrictions. Finite difference methods also have been used ef-
fectively to accommodate irregular boundaries in forward-prop-
agation computations [12], [13].

We show in this paper that, under the forward approximation,
irregular surfaces can be accommodated in a split-step algorithm
at the same level of fidelity as the finite-difference methods.
The forward approximation allows redefinition of the total field
as a new source, whereby the propagation medium can be in-
corporated in the same way that it is incorporated in the PWE
split-step algorithms. Field redefinition also improves the effi-
ciency of the forward BIE solution by reducing the number of
Bessel function evaluations. To demonstrate PWE-BIE trade-
offs, we compare propagation predictions from our BIE method
as described in Rino and Ngo [3] and a simplified implemen-
tation of the scheme described by Donohue and Kuttler. As it
happens, a simplified form of their linear shift map is intrinsi-
cally part of the forward-BIE computation.

Our results support the postulate that PWE-based methods
capture the essential characteristics of scatter from a surface
smooth on the scale of the forward-marching integration step.
Our method is very efficient for what it achieves, but it does re-
quire substantially more computation than PWE. Beyond gen-
erating fine structure in the forward fields, however, the BIE
method produces surface currents that can be used to approx-
imate bistatic scatter as would be measured, for example, by
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remotely sensing the scatter from an isolated surface segment.
The PWE field near the surface is sometimes used as an input to
a specified surface scattering function to approximate average
bistatic scatter, whereas surface currents provide problem-spe-
cific information and practical bounds on the use of local bistatic
scattering functions.

II. BACKGROUND

Wave propagation is governed by Helmholtz’ equation,
which we write here as

(1)

Hereafter, an overbar will be used to denote a vector. The three-
dimensional (3-D) complex scalar field has the implicit
temporal variation , and where is the
propagation velocity in the homogeneous background medium.
In the absence of boundaries, (1) admits the formal solution

(2)

where is the free-space
Green function, and is a solution to the homogeneous
form of (1). Weak inhomogeneities are introduced by using the
source function

(3)

where is the perturbation to the refractive index ,
and is the reference (acoustics) or vacuum velocity (electro-
magnetics).

Elaborating on our earlier development [3], it can be shown
that the two-dimensional (2-D) Fourier decomposition of (2) in
the plane at can be separated into forward- and backward-
propagating field components as follows:

(4)

(5)

where is the 2-D transverse wavevector, and
. The total field is obtained by the superposition

(6)

where . Differentiating the defining equations with
respect to yields the coupled first-order differential equations

(7)

Substituting from (3) and transforming back to the spatial do-
main recasts the equations in their spatial-domain form

(8)

The propagation operator

(9)

is defined by expanding the square root in a Taylor se-
ries with the term containing the transverse Laplacian

used in place of the expansion variable.
The formal equivalence implied by (9) can be established by a
term-by-term association with the Taylor series expansion of
the exponential propagation factor in the homogeneous solution
to (7).

If only the mode survives, with , (7) reduces
to the ordinary transmission-line equations. The source func-
tion can be configured to represent small nonuniformities in the
characteristic impedance. Up to this point, however, no approx-
imations have been made beyond those implicit in (3). More-
over, the equations are equally valid for principal propagation
perpendicular or parallel to the surface reference plane. For per-
pendicular propagation theaxis is vertical, and the model can
be used to generate transparent boundary conditions essentially
equivalent to those demonstrated by Levy [14], [15]. For hor-
izontal propagation, the integral term in (8) can be simplified
by noting that decays rapidly compared to the scale
of change of the remaining factors in the integrand. Removing
these terms and integrating the Green functions shows that

(10)

which is the familiar phase perturbation that appears in the
PWE.

With or without approximation to the media-interaction term,
the form of (8) suggests the forward approximation

, which leads to the forward-propagation model basic
to this paper and the PWE-based methods in general

(11)

Because the free-space propagator is a sym-
metric function of , propagating the antisymmetric or the
symmetric extensions of preserves that symmetry with
respect to . If there are no variations, these modes satisfy the
canonical boundary conditions for impenetrable surfaces. For
weakly penetrable surfaces, one can use an impedance boundary
condition, which is a linear combination of the normal deriva-
tive and complex field on the surface. Kuttler and Dockery [16],
[17] developed a mixed Fourier transform that satisfies both (11)
and the impedance boundary condition for a flat surface.

For an irregular boundary, surface height is a function of po-
sition, . Beilis and Tappert [1] introduced the trans-
formation

(12)

which effectively replaces the originaland derivatives by

(13)
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The transformation changes the form of the original equations,
but the distortions can be overcome by introducing an appro-
priately chosen phase function and making some additional ap-
proximations. Donohue and Kuttler [2] developed a refined ver-
sion of this scheme that effectively replaces the stair-step ap-
proximation with linear segments and incorporates the mixed
Fourier transformation. They introduced the term linear shift
map (LSM) to describe the refined method. To distinguish that
method from our own procedure described below, we will use
the term “simplified” linear shift map (SLSM).

In the SLSM coordinates, the free-space propagator becomes

(14)

where . We convert this equation to a first-order dif-
ferential equation by performing a perturbation expansion about

and taking the limits that define the partial derivative ofwith
respect to . The result is

(15)

Because of the dependence of , Fourier transformation
in the shifted coordinates is possible only for a one-dimensional
surface, whereupon

(16)

Equation (16) shows that propagation in the SLSM system can
be achieved by adding the term to the wide-angle prop-
agation operator. It follows that, to the extent that the surface can
be approximated by piecewise horizontal segments, all the pre-
vious methods can be generalized by using (16) in place of the
propagation operator. No further manipulation of the equations
is necessary.

III. B OUNDARY INTEGRAL EQUATION METHODS

Any solution to the Helmholtz equation can be represented as
a superposition of radiating elements on a surface that isolates
the field sources. Boundary integral equations uniquely deter-
mine induced sources that support the scattered field (see, for
example, [18, Ch. 8.3]). Only the Dirichlet problem for a one-di-
mensional surface (zero field on the surface) will be developed
here, although the method is restricted only by the forward ap-
proximation. The BIE method for a one-dimensional surface is
described in an earlier paper and the references cited therein [3].
For a field initiated at , the continuous form of the BIE
for the Dirichlet problem is

(17)

where represents the incident field propagated
freely to the surface, is an outward radiating
Hankel function of order zero, and

(18)

is the unnormalized form of the normal derivative. In an elec-
tromagnetics problem, the normal derivative of the horizontal
electric field is proportional to the magnetic field, whereby the
source is effectively an electric sheet current.

To solve (17) numerically, it is necessary to obtain a discrete
approximation to the unknowns. However this is done, the result
is a system of linear equations with unknowns that define the
source function. The forward approximation amounts to trun-
cating the integration in (17) at. Point-matching produces the
following system of equations

(19)

where with

for

for

(20)

(21)

and

(22)

The zero superscript indicates the lowest order approximation
that would formally initiate the forward–backward method [5]
or the method of ordered multiple interactions [6]. The solution
is obtained by the forward recursion

(23)

The BIE solution and subsequent field reconstruction as de-
scribed up to this point would be highly inefficient for a large-
scale problem because resummation fromis required for each
new point. Clearly, one would like to aggregate the effects of
the remote scatterers to carry forward only the essential infor-
mation. This can be achieved by redefining the source field as
follows:

(24)

The notation means the total field in theplane
at , which combines the previous total com-
ponent propagated freely from with the contributions
from all the induced sources up to the source at whose
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contribution is reduced by half. This minimizes a small tran-
sient that can be observed in source function near the redefini-
tion point. With the number of fine steps per field redefi-
nition, the equivalent PWE sampling interval would be .
With field redefinition, (23) becomes

(25)

which together with (24) defines a forward-marching recursion.
It remains to describe the method of computing the excitation

field on the surface. Let represent the field at in
SLSM coordinates. From (14), it follows that

(26)

where is the Fourier transform in the SLSM co-
ordinates. The normal derivative on the surface is obtained by
taking . Computationally, this is achieved by shifting the
phase to compensate for the height change in conjunction with
the propagator. Thus, just one Fourier transform pair per cycle
is required. Two additional vector multiplications per step gen-
erate . We see that calculating the field on the
surface effectively introduces the SLSM in the BIE computa-
tion, but no approximation is involved. The final step in the com-
pute cycle applies the phase perturbation to
the field defined by (24). The overbar denotes an average over
the segment.

The additional computation over PWE includes the vector
multiplications required to generate , the

evaluations of the Hankel function plus mul-
tiply-and-add computations required to evaluate (25), and
the additional evaluations required to redefine the source
field per (24), where is the number of samples. A
point vertical FFT is common to both methods. In the field
redefinition particularly, an asymptotic approximation to the
Hankel function for large arguments significantly improves
the efficiency of the computation. The recursion described by
Chou and Johnson [9] could further improve computational
efficiency in the evaluation of (25). CWAVE is a FORTRAN
implementation of the forward BIE algorithm.

IV. FORWARD BIE-SLSM COMPARISONS

It is convenient to normalize the output from a forward-prop-
agation model to the maximum far-field amplitude that could
be delivered to the same far-field point in free space. By using
the far-field form of , a propagation factor can be con-
structed as follows:

(27)

where
distance from the phase center of the source aperture;
incidence angle from the direction;
integral of the amplitude distribution of the aperture field,
which is the maximum field that could be delivered in the
direction of .

Our first example uses an extension of the raised sinusoid
shown in [2, Fig. 2]. A 500-MHz CWAVE computation was ini-
tiated with a 3-m aperture field centered 50 m above the sur-
face reference. The aperture field was tapered using a Hanning
window. Propagation over a 9.8-km distance was simulated with
524 19.2-m split-step cycles. The propagator used a 2048-point
FFT at two samples per wavelength. An exponential taper was
initiated at 350 m above the surface to minimize reflections from
the upper boundary. Within each split-step cycle, source fields
were computed at 256 0.125-wavelength fine steps. A standard
atmospheric profile supplies the refractivity variation, which is
applied with height measured from the surface. The CWAVE
computation required approximately 1 h on a 300-MHz pentium
computer running Linux 4.2.

Fig. 1 shows the CWAVE propagation factor as a function of
distance and height. The plot has been decimated to the display
resolution. In the absence of focusing, the propagation factor
achieves a maximum value of 4 (6 dB). The strong reflections
on the facing side of the leading peak indicates an in-phase su-
perposition of at least two of the interference peaks intercepting
the lower portion of the profile. The fringing pattern on the
facing side of the second profile peak is attributable to a similar
interaction of the weaker field diffracted into the shadow of the
first peak. Because the smooth profile generates no backscatter,
forward BIE should capture all the scattering phenomena.
Fig. 2 shows the same computation performed with a Matlab
implementation of SLSM as defined by (16). To incorporate
the Dirichlet boundary condition, the sine transformation pairs
are used in place of the Fourier transform. For the SLSM
computation, 50-m steps were used. The result shows that the
simple interpretative Matlab implementation of SLSM, which
executes in minutes, also captures the scattering phenomena
albeit with some fine detail lost.

To demonstrate where significant departure between SLSM-
PWE and forward-BIE calculations do occur, we used a wind-
speed-dependent ocean surface-wave emulation to generate a
random structure that is unresolved in the SLSM method. In
fact, no attempt was made to introduce the fine structure into the
SLSM computation since the increased sampling requirements
defeat the purpose of using that approximation. The random
field was superimposed on the raised sinusoidal profile creating
a correlation scale of approximately 100 m. The CWAVE results
are shown in Fig. 3. Comparison of Figs. 1 and 3 shows that the
roughness scatters mainly at large scattering angles, with the pri-
mary forward field largely unaffected. To see this directly, the
vertical profiles at 19.2 km are compared in Fig. 4. The smooth
SLSM profile is denoted “0 mps,” and the rough profile is de-
noted “6 mps,” which is the wind speed used to generate the
roughness component added to the smoothly varying surface
profile. The differences are significant, although possibly ac-
ceptable as a speed-fidelity trade for many applications. Overall,
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Fig. 1. CWAVE propagation-factor for 500-MHz source over large smooth sinusoidal obstruction. Focusing is observed on the facing side of the surfacepeaks.

Fig. 2. Fourier-domain SLSM propagation factor for 500-MHz source with same propagation and surface conditions as shown in Fig. 1.

the SLSM method captures the essential characteristics surpris-
ingly well.

The ramifications of nonspecular scatter in remote sensing
presents a problem that cannot be addressed directly by using
PWE-based methods because the surface structure must be

known to calculate the backscatter. The two-scale model
suggests simply applying the small-perturbation result with the
calculated incident field. With the BIE method, this scheme
can be tested directly. In a typical scenario, the transmit beam
is pointed downward a few degrees or more to illuminate a
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Fig. 3. CWAVE propagation factor for the same propagation environment shown in Fig. 1 but with small-scale surface-height variations added. The small-scale
surface roughness scatters mainly at large angles.

Fig. 4. Comparison of vertical profile at 19.2 km from the CWAVE computation shown in Fig. 3 with Fourier-domain SLSM emulation using the smooth surface.
Wind speeds 6 mps and 0 mps refer to the bold and thin curves, respectively.

large surface segment. To simulate this situation, a “virtual”
1-GHz source was placed at a 50-m height above the surface.
The actual source could be airborne at a much larger height
and range. In the CWAVE computation, the aperture field is
phased to point the beam 2.5downward. The ocean surface

generator was used to simulate structure representative of a
10-kt (5 m/s) wind. The frequency was increased to narrow
the beam so that the phenomena of interest could be captured
within a smaller computation range (256 cycles). Otherwise, the
wavelength-normalized sampling was the same as used in the
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Fig. 5. CWAVE propagation factor for for 1-GHz source with a beam pointing 2.5downward to reflect from rough ocean-like surface.

Fig. 6. Geometry for surface bistatic scatter computation.

previous examples. The CWAVE propagation factor is shown in
Fig. 5. There is a substantial amount of nonspecular scatter that
fills the region that would be devoid of scatter from a smooth
surface. However, as with our previous experience, the specular
forward beam is not too different from its smooth-surface
reflection (not shown).

To pursue this further, we envision the experiment shown
schematically in Fig. 6. An airborne radar receiver samples the
scattered field by range gating the return pulse. To the extent that
frequency dispersion is negligible over the frequency band, this
isolates the surface scatterers to the projected range resolution
on the surface. The currents within the range gate are influenced
by scattering outside that window, but the isolation is modeled
correctly within the limit of the forward approximation. The ge-
ometry defines a scattering anglefrom the center of segment
of length , which represents the projected range resolution de-
fined by the difference in pathlength of the two rays shown in the
figure. To calibrate such a measurement, it would be necessary
to measure or calculate the power flux intercepting the isolated
segment of the surface. In a numerical experiment, there is no

impediment to perfect calibration. The scattered field was cal-
culated over sliding segments as

(28)

The bistatic scattering function referenced to the center of the
sliding window is defined by the relation

(29)

where is the vertical flux crossing the surface. The integral
of (29) over rad should be unity, which is a good test of
the consistency of both forward BIE and the construction of the
bistatic scattering function.

The upper frame in Fig. 7 shows the forward bistatic scattering
function as computed from (29) for a 500-m segment centered
on the nominal specular reflection point, which is the unique
point that satisfies Snell’s law for the incident wave direction.
The lower frame shows the agreement between the calculation of
the total flux crossing a sliding 500-m surface segment centered
on the ordinate (see Fig. 5) and the unnormalized bistatic scatter
from the same segment, which should give the same value. As
the incident grazing angle approaches zero, we observed that the
surface segment required to achieve this level of agreement in-
creasesuntil it isno longerpossible toobtainaconsistentestimate
of a bistatic scattering function. Effectively, a surface scattering
function that is sensibly independent of the illuminating source
cannot be constructed. Stated another way, at grazing incidence,
the plane wave excitation that defines the scattering function is a
mathematical construct that cannot be realized in an experiment.
At low grazing angles, therefore, the full forward computation is
necessary to calculate the surface scattering.
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Fig. 7. Reconstruction of the bistatic scatter from a 500-m surface segment centered on nominal specular reflection point (upper frame) together with a direct
and local computation of energy conservation for the scatter from a sliding surface segment (lower frame).

V. DISCUSSION

In previous work, we demonstrated that the BIE formula-
tion of surface scattering can be adapted for solution in a for-
ward-marching algorithm that, with field redefinition, can ac-
commodate a weakly inhomogeneous propagation medium. The
scheme generalizes the PWE method, but to do so it is neces-
sary to sample the surface at subwavelength intervals. The PWE
methods typically sample the surface in steps of more than 100
wavelengths. They achieve their efficiency by using a coordi-
nate system whose origin follows the surface. When Fourier-do-
main methods are used, the boundary conditions are strictly
satisfied only on horizontal segments. Our SLSM scheme ac-
cepts the error introduced at the discontinuities. Donohue and
Kuttler [2] adapted the method for piecewise linear segments,
which strikes a compromise between exact local boundary con-
ditions and edge effects. Results presented in this paper show
that SLSM captures the principal scattering characteristics for
a smoothly vary surfaces. However, the effects of small-scale
random structure that would be unresolved with typical LSM or
SLSM sampling are unique to the BIE method. Fig. 3 and par-
ticularly Fig. 5 show a clear separation in scattering angle of the
two structure scales.

We also demonstrated that the source fields unique to the BIE
method can be used to calculate the bistatic scatter from the sur-
face directly. Our final example showed, however, that a consis-
tent interpretation of the surface scatter as a local incremental

phenomenon is possible only at grazing angles above at least
one degree. In effect, a point is reached where the area necessary
to resolve the grazing angle is too large to support a uniform in-
cident field. In that situation, standard remote sensing methods
must be replaced with a more complete forward scatter compu-
tations.
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