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Abstract

This paper explores the equivalence between spherical wave and plane
wave propagators. Spherical wave propagators are intimately part of
di�raction and boundary scattering theory. Consequently they are used
almost exclusively in introductory presentations of electromagnetic the-
ory. However, equivalent representations can be constructed from su-
perpositions of propagating plane waves. This leads to two di�erent
approaches to di�raction theory. Spherical wave computations are initi-
ated by induced point sources. Plane wave computations are initiated by
an equivalent aperture plane �eld. Subsequent propagation can be com-
puted with Fourier transformations. Sampling requirements ultimately
limit the utility Fourier domain computations. Examples are presented.

1 Introduction

Radio frequency (RF) and optical remote sensing applications exploit diverse
technologies, but the essential underlying physics is captured by the scalar time-
harmonic form of the Helmholtz equation,

r2 (r) + k2 (r) = 0; (1)

where  (r) is the complex �eld, k = 2�fn=c = 2�=� with f , �, n, and c
representing frequency, wavelength, refractive index, and the velocity of light,
respectively. Green's theorem facilitates the construction of solutions to (1) as
superpositions of spherical waves emanating from induced sources on boundary
surfaces that isolate material regions in the propagation space. Kong empha-
sized this time-honored superposition principle by referring to his development
of EM boundary scattering theory as the mathematical formulation of Huygen's
principle, [1, Chapter 5.3]. However, in most practical problems the source re-
gion can be isolated from a source-free region by a bounding plane. In the
source-free region beyond the bounding plane, (1) admits an exact solution as
a superposition of plane waves. The propagating plane waves are initiated by
a spectral decomposition of the �eld in the bounding plane. Thus, observable
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�elds beyond their source region can be computed as a superposition of spheri-
cal waves emanating from singular sources or as a superposition of plane waves
emanating from the �eld in a bounding plane.
Much of our understanding of propagation, di�raction, and scattering phe-

nomena comes from approximations that make the propagating wave �elds eas-
ier to analyze. Examples include the Fraunhofer and Fresnel approximations
and the Fourier-transform relation between the aperture stop area and the point-
spread function in the focal plane of a lens system. Inhomogeneous but trans-
parent structure in the propagation region can be accommodated by replacing
the right-hand side of (1) with the distributed source term

S (r) (r) = �2k2
�
�n (r) =n

�
 (r) : (2)

The refractive index variation has been incorporated by using the following
de�nition of the refractive index:

n (r) =
�
n+ �n (r)

�
: (3)

To the extent that backscatter induced by �n (r) has a negligible e�ect on the
wave�eld propagating away from the initiation plane, the same free-space prop-
agator interacts continuously with the e�ective source term.[2, Chapters 2 and
3] With the introduction of a varying refractive index, ray optics can be added
to the approximate procedures that simplify the computation of propagating
wave�elds.
Often the �elds of interest are su�ciently removed from the source region

that angular displacements about the observation point are small compared to
the propagation distance. One can exploit this constraint either by approxi-
mating the spherical wave radii to the point of observation or by approximating
the plane-wave propagation operator. Approximating the propagation opera-
tor leads to the parabolic wave equation (PWE), which is well know in optics,
RF, and acoustics.[3] The utility of the method comes from the fact that sam-
pling requirements driven by the angular extent of a cone that captures the
propagating waves. The sample intervals are much larger than the operating
wavelength.
This paper reviews the mathematical equivalence between plane-wave and

spherical-wave propagation computations with emphasis on numerical compu-
tation based on full-wave propagation in source-free regions. The theoretical
support for what amounts to the theory of di�raction is well articulated in the
seminal expose by Born and Wolf.[4]. However, modern computation capabili-
ties bring more rigorous theoretical results into the \easier to analyze" regime.
The di�raction operator is a case in point. In can be evaluated by using two-
dimensional discrete Fourier transforms with no approximation other than those
imposed by sampling.
The demonstration of equivalence between spherical-wave and plane-wave

formulations would be of purely academic interest if alternative computational
procedures did not provide computational or analytic advantages. The most
demanding computation is the propagation of the �eld in the aperture stop
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plane of a focusing lens system through the focus and beyond. It has already
been noted that computation requirements are driven by the angular spread
of the aperture wave�ed distribution. However, one �nds that the angular
spread of a converging spherical wave subtends more than 50% of the di�raction
limit, which is well beyond narrow-angle scatter. The equivalent Huygens-
Fresnel construction has the same sampling requirements, but the concentration
of the �eld near the focus makes adequate local sampling at optical wavelengths
feasible. A full di�raction computation at 500 GHz is demonstrated, without
special procedures to manage memory or to take advantage of the small support
of the �eld as the focal point is approached.

2 Background

The common starting point for theoretical development is the scalar Helmholtz
equation, which as already been introduced. Equation (2.2) in Rino [2] is the
vector form of (1). Equation (3-8) in Goodman [5] is the time-domain form
of the parent equation that leads to (1). The derivation of the modi�ed form
of the Helmholtz equation neglects the term, r(E�r lnn). Equation (3-13)
in Goodman [5] is equivalent to (1) when the source term is included. In all
cases, the time variation of the complex �elds, exp f�2�iftg, is implicit. The
treatment here is for fully coherent wave�elds.

2.1 Boundary Integral Representations

As noted in the introduction, boundary integral representations are used to
characterize the interaction of EM waves with material objects and boundary
surfaces. The development in Goodman [5] follows Born and Wolf [4], which
starts with the scalar boundary-integral representation

 (r) =

ZZ
�

�
@ (rs)

@N
G (r; rs) +  (rs)

@G (r; rs)

@N

�
ds: (4)

In (4),  (r) represents the complex �eld in the unbounded region outside the
boundary �, and

G (r; rs) =
exp fik jr� rsjg

jr� rsj
; (5)

is the scalar Green function. One can show that  (r) is a formal solution to
Helmholtz equation by virtue of the singular behavior of the Green function as
r! rs. The Green function and its normal derivative propagate induced �elds
on the boundary surfaces throughout the exterior region as spherical waves. A
radiation condition eliminates contributions from the outer boundary that closes
the Green theorem surface.

A self-consistent determination of the induced boundary �elds requires de-
tailed knowledge of the electric properties of the medium inside the boundary
as well as the boundary surface geometry. For perfectly conducting surfaces,
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the boundary integral can be manipulated as written to determine the induced
�elds. Either the �eld or its normal derivative is forced to be zero on the bound-
ary. Equations that can be solved for the unknown source �elds can be obtained
by taking the limit as r! rs, but in doing do so one must accommodate the sin-
gular behavior of the Green function and its normal derivative. However this is
done, stable results demand sub-wavelength sampling and extreme care in their
formulation. Most practical applications of boundary-integral representations
approximate the induced �elds.
For reference, the essential elements of the theory of di�raction as it is de-

veloped for optical systems are captured by the Dirichlet integral representation

 (r) =

ZZ
�

U (rs)G (r; rs) ds; (6)

where U (rs) is a source function on a prescribed surface. If U (rs) represents an
evolving spherical wavefront, (6) is a mathematical statement of the Huygens-
Fresnel construction. The equivalence that will be established later is readily
generalized to forms of the theory that incorporate the derivative (Neumann)
term and extensions to vector �elds.

2.2 The Forward Approximation

The theoretical development in [2, Chapter 2] avoids an explicit treatment of
scattering theory by exploiting the fact that propagating waves, however they
are initiated, are highly directed but not necessarily con�ned to a narrow cone
of scattering angles. This is made explicit by showing that (1) with the source
term admits an equivalent representation as a pair of coupled �rst-order di�er-
ential equations. The coupled equations individually characterize wave �elds
that propagate in opposite directions with respect to a prescribed reference axis.
In the absence of the weakly inhomogeneous structure that couples the equa-
tions, the solutions are uncoupled and solve (1) exactly. A unidirectional source
excites waves propagating in the opposite direction only through scattering in-
teractions within the medium, but these scattering interactions have a negligible
e�ect on the dominant forward propagating wave�eld.
The result is a �rst-order di�erential equation called the forward propagation

equation (FPE). The following scalar FPE fully characterizes propagation in
an unbounded weakly inhomogeneous medium:

@ (x; &)

@x
= � (x; &) + ikS (x; &;�) (x; &) : (7)

In (7)  (x; &) represents the complex wave �eld in a rectangular coordinate
system with x the propagation reference axis and & a position vector in the plane
normal to the x direction. The source term has already been introduced. The
leading term in (7) represents the propagation of a coherent monochromatic
wave �eld in a homogeneous medium. The exact form of the propagation
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operator is

� (x; &) =

ZZ b (x0; �) exp f�ikg (�) (x� x0)g
� exp fi� � &g d�

(2�)
2 : (8)

The complex �eld, b (x0; �), is the two-dimensional Fourier transform of the
�eld in the plane at x = x0

b (x0; �) = ZZ  (x0; &) exp f�i� � &g d&; (9)

and

g(�) =

8<:
q
1� (�=k)2 for � � k

i

q
(�=k)

2 � 1 for � > k
: (10)

Irrespective of how the FPE was derived, one can readily verify by direct sub-
stitution that (8) satis�es (1). Thus, solutions to the FPE in a homogeneous
medium are exact solutions to the homogeneous Helmholtz equation. The un-
numbered equation in Section 3.10.4 of Goodman [5] is equivalent to (8),1 but
Goodman does not use it in his subsequent developments.

2.2.1 Narrow-angle scatter

For numerical integration of the FPE, the narrow-angle approximation is neither
required nor advantageous. However, the narrow-angle scatter approximation
is essential for analytic computations. When the spectral content of the �eldb (x0; �) is well contained within the disk de�ned by � = k, one can use the
approximation

g(�) �= 1� (�=k)2 =2. (11)

The Formal equivalence of multiplication in the Fourier domain by powers of �
and derivatives of the same order in the spatial domain leads to the following
formal de�nition of the di�raction-operator and the parabolic approximation:

ik� = ik
p
1 +r?=k2

�= ik + ir?= (2k) : (12)

The parabolic approximation (7), namely

@U(x; &)

@x
= ir?U(x; &)=2k + ik�n(x; &)U(x; &); (13)

is obtained by applying (12) and performing some straightforward manipula-
tions. The PWE solutions apply to the modi�ed �eld

1In Rino [2] the propagator is de�ned in terms of spatial frequencies represented by � =
[�y ; �z ] where �y = 2�=L rather than spatial frequencies.
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U(x; &) =  (x; &) expf�ikxg; (14)

although removal of expf�ikxg does not inuence computational requirements.

2.3 Ray Optics

The theory of ray optics is derived by approximating vector �elds by products of
the formA (x; &) exp fik� (x; &)g. The refractive index is treated as a continuous
variable. When the refractive index gradients are small, which is a necessary
condition for weakly inhomogeneous media, the evolving �eld structure can be
characterized by propagation along geometric ray paths. The ray trajectories
are de�ned by position-dependent vectors r (s), where s is the distance along the
ray. The vector r (s) is constrained locally by two orthogonal vectors, namely
the unit vector s tangent to the ray at r (s) and the curvature vector { = ds=ds,
which is normal to s. The ray trajectory in the medium must satisfy the ray
equation

n{ +
dn

ds
s = rn: (15)

This equation can be derived from (13) by assigning the phase variation

exp fik� (x; &)g
to U(x; &) [3, Chapter 5.2]. This is the basis for the earlier claim that ray
optics in unbounded media is contained in the broader class solutions to the
FPE. Note that aside from the wavelength dependence of the refractive index,
the ray trajectories are wavelength independent.

2.4 Optical Lens Systems

Optical lens systems require special treatment for two reasons. First, a lens
is de�ned by discontinuous boundaries, which often have discontinuous normal
derivatives as well. Thus, an optical lens cannot be part of a weakly inho-
mogeneous medium. Second, the di�raction e�ects that limit the resolution
of optical systems ultimately must be reincorporated into the analyses. A
highly simpli�ed lens system is used here to illustrate the use of ray optics to
approximate a starting �eld for Fourier-domain computation.
Consider a representative lens system constructed from a colinear arrange-

ment of homogeneous radially symmetric lens objects. For simplicity, lens
objects will be con�ned to closed volumes circumscribed by intersecting spher-
ical segments. As already noted, boundary scattering theory tells us that the
transmission and scattering (reecting) properties of lens objects are determined
by the shape of the de�ning boundary surfaces and the constitutive properties
of the lens material. The dielectric properties are de�ned by a frequency-
dependent refractive index. From ray theory it follows that ray paths within
homogeneous lens objects are straight lines.2

2For this development only monochromatic radiation will be considered.
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A planar boundary admits an exact solution that can be constructed by
applying Snell's law to determine the wavefront propagation directions on either
side of the boundary:

sin �1
sin �2

=
n2
n1
: (16)

If the boundary variations are smooth enough, the boundary conditions are
approximated by applying Snell's law with respect to the surface normal. The
implicit assumption here is that the lens system is su�ciently uniform that
rays can be approximated by straight lines inside lens objects. Thus, ray
segments can be de�ned by unit vectors, ui, where i corresponds to the side
of the boundary in which the ray is de�ned. Let un represent a unit vector
normal to the surface. At the boundary

ui � un = cos �1,

which de�nes sin �1. Snell's law de�nes sin �2, which is measured with
respect to �un. The following pair of equations de�ne the continuation of ray
trajectories within lens objects:

�un � u2 =
q
1� sin2 �2 (17)

�un � u2 = sin �2 (18)

Knowing u2, one can calculate the intersection of the ray with the opposite
lens cap. The process can then be repeated to determine the direction of
the rays exiting the lens object. There are many utilities available that will
perform completely general ray analyses of lens systems and report the results
graphically or in tabular form. However, the simpler formulation is useful for
illustrative purposes. Figure 1 shows the evolution of a bundle of paraxial rays
through a bispherical lens. The cap radii are 120 mm. The lens thickness is
10 mm. The refractive index at .46 � is 1.62. The red pentagram show the
nominal location of the focus calculated from the lens equation

1

f
= (n� 1)

�
1

r1
� 1

r2
+
(n� 1)
n

d

r1r2

�
; (19)

where �rn is the positive convex radius of curvature of the lens faces, and d is
the thickness of the lens along the central ray.

2.4.1 Field Estimation

The modi�ed ray-optics construction just described is the only practical way
to compute an optical �eld in the aperture stop of a lens system. Consider
the normal plane at x = 10 mm. The optical path is de�ned as the ray-path
integral weighted by the refractive index:

s =

I
nds =

X
i

nisi: (20)
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Figure 1: Vertical cross section of the ray-trace evolution of a parallel bundle of
rays interacting with a bispherical lens. The red pentagram shows the predicted
focal point.

The summation is over the three straight-line paths that connect points in the
entrance plane to points in the exit plane. The complex �eld in the vertical
plane has the form

 (x; & 0) = A (x; & 0) exp fiks(& 0)g : (21)

The amplitude weighting accounts for the increased �eld intensity necessary to
conserve energy as the �eld intensity becomes more concentrated, but that small
correction will be ignored here. Figure 2 shows the optical path computed at
the exit plane of the lens object shown in Figure 1. An eighth-order polynomial
�t was used to approximate the optical path.
Figure (3) shows a purely quadratic phase variation overlaid on the phase

variation deduced from ray-optics for the bispherical lens. It can be see that the
departures become more pronounced as the edges of the lens are approached.
In e�ect the resolving power of the lens implied by its diameter cannot be
realized. The possibility of using a full di�raction computation to explore the
rami�cations of ideal lens distortions will be discussed.

2.5 Forward Propagation

This section presents a development of what is usually referred to as the theory
of di�raction by using only the plane-wave propagator. The formal equiv-
alence between the Huygens-Fresnel integral representation and the FPE are
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Figure 2: Optical path length computed from ray-trace (red dots) . Cuyan
curve is least-squares �t to 8th order polynomial.

Figure 3: Ideal phase correction to produce a focus at a distance f from the
aperture plane.
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also demonstrated. The standard developments use the narrow-angle scatter
approximation, whereas the Fourier-domain propagator requires no prior con-
straint.

2.5.1 Full-Wave Di�raction

In an unobstructed homogeneous region, the solution to the scalar Helmholtz
equation is determined by the �eld in the plane at x = x0, which will be re-
ferred to as the aperture plane. If the aperture plane is tilted, a linear phase
variation can be applied to launch the wave�eld normal to the orientation of
the computation plane [6]. Alternatively, the propagator itself can be written
for evaluation along the principal propagation direction [2, Chapter 4]. For the
purposes of the development here, these details are unimportant.
If one is interested in the �eld only at a large distance from the aperture

plane, the solution takes a particularly simple form. An application of the
stationary phase approximation to (8) will show that

lim
�x!1

� (�x; &) = �ig(�r)
h
k2 b (0;�r)i expfikrg

2�kr
; (22)

where r =
p
�x+ &2 and �r is the transverse wavenumber in the direction

of r = [�x; &]. It is fundamental to the design of remote sensing systems
because it de�nes the on-axis signal intensity at distance r from the source.
O� axis, the �eld variation is de�ned by the Fourier transform of the aperture
distribution. In optics literature, (22) is called Fraunhofer approximation [5,
Chapter 4]. Although the narrow-angle scatter approximation was not used in
the derivation presented here, narrow-angle scattering is implicit because the
transverse dimensions are necessarily small when �x!1.
The near-�eld is a much more demanding environment. To explore the near

�eld, it is convenient to rewrite (8) as an explicit linear operation on the starting
�eld:

� (x; &) =

ZZ �ZZ
 (x0; =k) exp f�i� � g d

�
� exp

n
i
p
1� �2 (k�x)

o
exp fi��k&g d�

(2�)
2 : (23)

Changing the order of integration isolates the singular inner integral:

� (x; &) �
ZZ

 (x0; =k)

�
"ZZ

exp
n
i
p
1� �2 (k�x)

o
exp fi�� ((k&)� )g d�

(2�)
2

#
d; (24)

The exchange of integration order is justi�ed when the spectral content of the
starting �eld is limited to a narrow range of propagation angles, say wherep
1� �2 ' 1� �2=2. It then follows that
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� (x; &) ' exp fik�xg
ZZ

 (x0; =k)

�
ZZ

exp
�
�i�2 (k�x=2)

	
exp fi�� ((k&)� )g d�

(2�)
2 d. (25)

The Fourier transform represented by the � integration can be evaluated ana-
lytically. Carrying out the integration leads to the following near-�eld form of
the equation, which is called the Fresnel approximation

� (�x; &) ' �ik exp fik�xg
2�x

�
ZZ

 (0; & 00) exp
n
i (& � &)2 k= (2�x)

o
d& 00 (26)

=
�ik exp fik�xg

2�x
exp

�
i&2k= (2�x)

	
�
ZZ �

 (0; & 00) exp
�
i& 002k= (2�x)

	�
exp f�i&:& 00 (k=�x)g d& 00;

(27)

The two forms of the result are identical to Goodman's Equations (4-14) and
(4-17). The fact that the �nal form of the Fresnel approximation is itself a
Fourier transformation should not be confused with the Fourier transformation
in the propagation integral (23), which involves no approximations.
The reason for rederiving these well know results here is to show that they

are special cases of full-wave propagation, which can be evaluated numerically by
using Fourier transformations. As already noted, there is no compelling reason
to impose the narrow scatter approximation if numerical computation is being
pursued. For the Fraunhofer regime, this is empty generality because there are
few, if any, practical situations where the narrow-angle scatter approximation
is violated. This is manifestly not the case in the Fresnel region. To explore
this, consider the Huygens-Fresnel construction, which is also exact insofar as
the propagation of a known starting �eld is concerned. The main di�erence is
that the Huygens-Fresnel starting �eld is de�ned on a non planar surface.
Starting with Huygens-Fresnel, consider the �eld in a plane at x = x0 that

isolates the de�ning surface from an unobstructed propagation space. From
(6),

 HF (x0; &) =

ZZ
�

U (rs)
exp fik jx0 � xs; & � &sjg

jx0 � xs; & � &sj
ds: (28)

Substituting the Wyle representation of the Green function,

exp fik j�x; & � & 0jg
j�x; & � & 0j =

ZZ
i expfikg(�)�xg

2kg(�)
expfi�� (& � & 0) g d�

(2�)2
; (29)
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into (28) and reversing the order of integration as before shows that

 HF (x; &) =

ZZ
�

U (rs)

ZZ
i expfikg(�)�xg

2kg(�)
expfi�� (& � &s) g

d�

(2�)2
ds

=

ZZ 24 i

2kg(�)

ZZ
�

U (rs) expf�i� � &sgds

35 expfi� � &g
� expfikg(�)�xg d�

(2�)2
: (30)

Evaluating the two-dimensional Fourier transform of  HF (x0; &)
3 establishes

the equivalence

b HF (x0; �) = i

2kg(�)

ZZ
�

U (rs) expf�i� � &sgds: (31)

Rewriting (30) in terms of b HF (x0; �) reproduces the plane-wave propagator:
 HF (x; &) =

ZZ b HF (x0; �) expfikg(�)�xg d�

(2�)2
: (32)

Note that (31) de�nes the Fourier transformation as an integration over the
induced sources of the �eld. It shows as well that the subsequent propagation
of that �eld can be calculated in principle without approximation using Fourier-
domain methods. The factor 1=g(�) in (31) is singular at k = �. For k < �
it has little e�ect, but to properly accommodate the singularity requires careful
evaluation. The poles in the spatial Fourier domain are necessary for generating
the singular behavior of the Green function. With the singular points in the
source region well removed from the plane at x = x0, this term can be safely
ignored.
Reciprocity provides another example of the equivalence between Green-

function and plane-wave representations. The Green function is intrinsically
symmetric to an interchange of the source and �eld point variables, which leads
to the reciprocal interchange between a source point and a measurement point.
It is also true that a spectral domain representation that maps incident plane
waves to forward or scattered plane waves can be constructed for invariance to
an interchange of wave vectors. [7].

3 Numerical Examples

There are two integral representations of a propagator that can be used for
computing the free-space evolution of a starting �eld. To the extent that the
computation is to be done numerically, sampling requirements dictate the most

3�x = 0 ( x = x0
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e�cient method. If �nite-di�erence methods are used, the di�raction operator
must be approximated. This can be advantageous if the spatial-domain support
of the �eld constrained.

3.0.2 Fraunhofer Di�raction

The �rst example uses a zero-phase starting �eld de�ned in a plane. A uni-
form circular \top hat" is a convenient realization because it admits an exact
transform:

b (x0; �) =D=2ZZ
�D=2

exp f�i���g d�

=

DZ
0

�

2�Z
0

exp f�i�� cos�g d�d�

=
2�

�2

�DZ
0

�J0 (�) d� =
2�D

�
J1 (�D) : (33)

From (27), the �eld in the focal plane of a lens is

 (f; &) � 2�fD

k&
J1 (k&D=f) :

The standard estimate of the focal spot size

d = 1:22�f=D; (34)

follows [5, Equation (4-32)].
Consider a uniform circular 0:46 � source with diameter D = 68:56 mm,

which is the maximum extent of the lens used in the ray-trace example. Stan-
dard discrete Fourier transform (DFT) sampling requirements establish the re-
lation

�L�K =
2�

N
:

Since the power-spectrum of the complex wave�eld is invariant to propagation,
the source �eld determines the sampling interval. In the far-�eld the beam
will expand at a rate dictated by the angular extent of the Fourier-transform
of the disc normalized to wavenumber. Since the expanding beam must stay
within the computation grid to minimize edge e�ects, a span of 5D was used
to accommodate a propagation distance of 10 m. Note that although D=� =
1:5� 105, adequate sampling was achieved on a 4096� 4096 grid with �=dy =
�=dz = 364.
Figure 4 shows a the vertical plane intensity for 50 logarithmically spaced

propagation steps. The �eld has been normalized to its on-axis peak, which
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Figure 4: FPE computation of the forward propagation of an unfocused circular
spot. The �eld intensity is a vertical slice of the two-dimensional �eld multiplied
by the square of the propagation distance.

becomes constant when the Fraunhofer limit is achieved. Logarithmic propaga-
tion steps were used to capture the evolution from the near �eld to the far-�eld
limiting form. One can verify that the sidelobes are predicted by the Fourier
transform of the disk. The point-spread function in the focal plane of a lens
(27) has this same overall shape.
Each computation step requires forward and inverse DFTs with in interven-

ing matrix multiplication. The computation used approximately 20 s per step
on a 64-bit, dual-processor PC with 8 GBytes of memory.

If one were interested only in free-space propagation, the computation of
the far-�eld limit would be of academic interest. However, if the propagation
medium is structured, the split-step method accommodates the e�ects of the
structure without further approximation.

3.0.3 Fresnel Di�raction

Computation of Fresnel di�raction in the absence of high curvature are well
established [5, Section 4.5]. Zeng and McGough demonstrated the full-wave
propagator for a low-curvature acoustics application [8]. The more challenging
application is the focusing of the wave �eld as it propagates from the plane of a
lens system aperture stop. Although ray-optics could be used to estimate the
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focal plane �eld, the simpler top-hat form with an appropriate phase variation
will be used here. The spherical wave to aperture distance might be used as a
surrogate:

 (�) = exp
n
ikf

�
1�

p
1� �2=f2

�o
for � < D=2: (35)

On the other hand, the Fresnel approximation shows that an aperture distribu-
tion with quadratic phase, namely

 (�) = exp
�
ik�2= (2f)

	
for � < D=2; (36)

is consistent with the Fourier-transform relation between the uniform aperture
and the focal-plane PSF. The aperture �elds (35) and (36) are nearly equal for
large f=D ratios.
Sampling requirements here are driven by the extreme phase variation at

optical frequencies (k > 105). It should not be surprising that near-wavelength
sampling is necessary. Trial and error showed that sampled �elds similar to the
Fraunhofer example could be used only for wavelengths in the millimeter range.
The focal length and aperture size were adjusted to provide a large aperture in
wavelengths.
To demonstrate the sampling requirements, Figure 5 shows the focal-plane

spectral density plotted against wavenumber normalized by k. An aperture
diameter of 60 mm was used with k = 10 reciprocal millimeters (f = 477:5
GHz). The quadratic source �eld de�ned by (36) with f = 140 mm was used.
The computation shows that the signi�cant portion of the spectral intensity
occupies nearly 50% of the range of non-evanescent waves, which is well beyond
narrow-angle scatter limits.
With adequate sampling, the �eld in any forward plane can be computed

by applying the Fourier-domain propagator. Figure 6 shows a vertical-plane
cut of the �eld intensity computed over 111 planes centered on the nominal
focal distance with 1-mm spacing. The x distance is measured from the exit
plane, which accounts for the displacement of the focus from 140 mm. Figure 7
shows the detail of the Focal plane intensity. It is imperceptibly di�erent from
the scaled Fourier transform of the Fourier-transform of the aperture stop as
predicted by (27).
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Figure 5: Spectral density function plotted against normalized spatial wavenum-
ber for qadratic-phase starting �eld.

Figure 6: Evolving �eld in vertical plane slice through the focal point.
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Figure 7: Focal plane �eld intensity.
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4 Summary and Conclusions

In Section 2.5.1 showed that the full-wave di�raction operator contains within
it the Fraunhofer and Fresnel approximations and the Fourier transformation
relation between the aperture �eld and the focal plane distribution of the �eld.
A varying refractive index can be accommodated, which supports ray optics
as a geometric construct for evaluating �eld structure. However, to use the
di�raction operator for propagation computations, it is necessary to determine
the starting �eld in the boundary plane. Choosing an appropriate starting
�eld is a topic well covered in the PWE literature. Within the con�nes of the
narrow-angle scatter approximation, the PWE formalism and the �ll di�raction
approach are indistinguishable, and the equivalences established are of purely
academic interest.
The most challenging computation is the propagation of a converging spher-

ical or near spherical wavefront to a focus. Ray optics can be used to accurately
predict where the focus will occur, and its degree of de�nition; however, the �eld
in the vicinity of the focus requires di�raction theory. The Huygens-Fresnel
construction will accurately compute the �eld near the focus, but in the inter-
vening region the computation, although feasible, is much more demanding. In
principle, the di�raction operator can be used to propagate the �eld from the
aperture plane through the focus and beyond. This was demonstrated with a
477.5 GHz �eld. This was the highest frequency for which the computation
could be performed on a high-end PC without memory management. One may
recognize that the computation is equivalent to evaluating the di�raction inte-
gral beyond the limits of the Fresnel-integral. The same problems occurs in
trying to compute the Fourier transform of a quadratic chirp radar signal. In
any case, we believe that the use of the exact form of the plane-wave propaga-
tion operator is both satisfying as an exact presentation of di�raction theory
and possibly a new method of calculating Fresnel domain �elds.
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