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Abstract12

In a previous publication the forward propagation equation was generalized to ac-13

commodate vector propagation at HF frequencies. Solutions obtained with split-step in-14

tegration were demonstrated for unbounded propagation and for a Chapman layer above15

a plane perfectly conducting boundary. This paper extends the solution to accommo-16

date reflections from a smoothly varying boundary. A complete solution requires calcu-17

lation of induced sources on the boundary surface. The fields from the induced sources,18

when combined with the incident field, satisfy the boundary conditions for the incident19

field vector components. Calculation of the induced sources can be incorporated in the20

split-step integration of the forward propagation equation. Alternatively, a variant of im-21

age theory reproduces the essential characteristics of the more computationally inten-22

sive boundary-integral methods. The paper concludes with ray-trace comparisons, which23

reveal a persistent but correctable bias.24

1 Introduction25

In a previous publication (C. Rino & Carrano, 2021), the forward propagation equa-26

tion (FPE) was generalized to accommodate vector fields in the Earth’s ionosphere at27

HF frequencies. Hereafter, we will refer to the generalized equation as the vector forward28

propagation equation (VFPE). The two-dimensional form of the VFPE confines prop-29

agation vector components to the yz plane. Although the field structure is invariant in30

planes displaced from the yz plane, the VFPE,31

∂E(y, z)

∂z
= ΘE(y, z) + i

k

2
∆X(y, z)χE(y, z), (1)

characterizes the progression of the three-dimensional electric field vector32

E(y, z) = Ex(y, z)ux + Ey(y, z)uy + Ez(y, z)uz. (2)

The free-space propagation operation ΘE(y, z) advances each vector component inde-33

pendently:34

Eu(y, z + ∆z) =

∫
Êu(κy, z) exp{ikg(κ)∆z} exp{iyκy}

dκy
2π

(3)

where35

Êu(κy, z) =

∫
Eu(y, z) exp{−iyκy}dy, (4)

with u = x, y, or z. The two-dimensional propagation vector, k, is defined by the spa-36

tial wavenumber, κy, and the constant magnitude, k = 2πf/c, where f denotes frequency37

and c is the vacuum velocity of light:38

k = [0, κy/k, g(κy)] (5)

g(κy) =

√
1− (κy/k)

2
(6)

The product ∆X(y, z)χ represents the susceptibility tensor1, which is defined in39

the appendix of (C. Rino & Carrano, 2021). Structure variation is confined to the scalar40

multiplier X(y, z). The complete susceptibility tensor characterizes the local interaction41

of the vector field in response to the ionosphere with a uniform background magnetic field.42

The direction of the magnetic field determines the components of the 3×3 matrix, χ,43

which has 3 distinct eigenvectors. All three eigenvectors are used in the split-step inte-44

gration of the VFPE as described in (C. Rino & Carrano, 2021).45

1 The dielectric tensor is defined as ε = I + ∆Xχ.
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Vector fields are initiated in the xy plane at z = 0 by specifying Ex(y, 0) and Ey(y, 0)46

normalized to unit total intensity. The Ez(y, 0) component is set to zero but could be47

specified if it were meaningful to do so. Either linear or circular polarization can be used.48

Chapter 4.8 in (Budden, 1985) discusses energy conservation. For propagation oblique49

to the magnetic field direction interaction with the ionosphere will generate a finite Ez50

field component. When this happens energy flow does not follow the direction of prop-51

agation. Energy is conserved, although energy stored in the magnetic field can reduce52

total field intensity carried by the Ex and Ey components. In the simulations energy is53

absorbed at the upper boundary to mimic propagation outside the measurement space.54

Specification of the incident field, the magnetic field vector, and X(y, z) completely55

define field realizations. The propagation problems of primary interest involve a radi-56

ally varying electron density with embedded structure. Time-harmonic field solutions57

are formally snapshots that remain invariant over the time a waveform comprised of a58

band of frequencies traverses the realization space. The frequency dependence of the field59

components imposes a group-velocity constraint. Determining paths that wave packets60

can follow is a secondary computation most often guided by ray-tracing. We expect an61

upward propagating beam, upon interacting with the ionosphere, to split into ordinary62

(O) and extraordinary (X) modes with complementary polarizations that provide a ba-63

sis for mode separation.64

Real-world applications invariably involve surface reflections. The same theory that65

produced the first-order VFPE differential equation can be adapted to incorporate sur-66

face reflections. The solution involves induced sources on the surface that function in the67

same way as the induced ionospheric sources. Calculating induces sources on the bound-68

ary requires the separate solution of boundary integral equations (BIEs). Once the in-69

duced sources are calculated, the total field above the surface can be constructed. Upon70

introducing the forward approximation, the BIE solution and the field reconstruction can71

be incorporated in the split-step integration of the VFPE. However, the computations72

require sub-wavelength sampling and careful accommodation of the Green-function sin-73

gularity on the surface.74

Surface reflections have been accommodated in scalar FPE simulations by using75

a variant of image theory, which is referred to as shift mapping (Donohue & Kuttler, 2000).76

The shift mapping operation involves an adjustment of the computation reference to the77

next stair-step surface height. The method is most often used in conjunction with impedance78

boundary conditions. FPE solutions in unbounded media typically use propagation steps79

exceeding hundreds of wavelengths. However, to minimize the effects of the step approx-80

imation discontinuities, sampling at near-wavelength must be used. A demonstration of81

split-step VFPE integration that fully accommodates a perfectly conducting spherical-82

earth boundary is demonstrated, although the image method is satisfactory for most ap-83

plications.84

2 Surface Reflections85

Boundary surfaces delineate discontinuous changes in the propagation medium. In-86

duced surface currents must flow on the boundaries to support the discontinuous field87

changes. Although a discontinuous boundary is an idealization, experience has shown88

that fields above an ideal boundary surface capture the critical characteristics of scat-89

tered or reflected fields from real surfaces.90

2.1 Boundary Integral Methods91

Two-dimensional boundary surfaces intersect the yz plane along a contour. The92

simplest contour is defined by a single-valued function f(z) such that y = f(z) defines93
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the surface height at z. Let E‖(y, z) denote the surface-parallel x or z field components,94

which are treated identically. The Ey(y, z) component is perpendicular to the surface.95

A standard text-book exercise will show that total fields above the surface (y > f(z))96

are characterized by the following equations:97

E‖(y, z) = E0
‖(y, z)−

i

4

∫ ∞
0

H0
0 (kρ(y, f(z′); z, z′))S‖(z

′)dz′ (7)

Ey(y, z) = Ei
y(y, z) +

i

4

∫ ∞
0

∂H
(1)
0 (kρ)(y, f(z′); z, z′)

∂N ′
Sy(z′)dz′ (8)

where H
(1)
0 (z) is the first-kind Hankel function of order 0. The theory can also be for-98

mulated with a second-kind Hankel function, which reverses the sign of the radial vari-99

able. The free propagation of the incident fields initiated at z = 0 are denoted by the100

0 superscript. Detailed developments can be found in Chapter 3 in (Morita et al., 1990)101

or Appendix A.5 in (C. L. Rino, 2011).102

The boundary-integral equations (BIEs) that define the induced source functions,103

are obtained by calculating the field and its normal derivative on the surface. The equa-104

tions are written here as105

1

2

∂E‖(f (z) , z)

∂N
=
∂E‖(f (z) , z)

∂N

0

−

i

4

∫ ∞
z0

∂H
(1)
0 (kρ(f(z), f(z′); z, z′)

∂N

∂E‖(f (z′) , z′)

∂N
dz′ (9)

1

2
Ey(f (z) , z) = Ey(f (z) , z)0+

i

4

∫ ∞
z0

∂H
(1)
0 (kρ(f(z), f(z′); z, z′)

∂N ′
Ep(f (z′) , z′)dz′. (10)

where106

S‖(z) = ∂E‖(f (z) , z)/∂N (11)

Sy(z) = Ey(f (z) , z) (12)

The normal derivative is defined as107

∂

∂N
=

∂

∂y
+
∂f

∂z

∂

∂z
, (13)

and108

∆ρ(y, y′; z, z′) =

√
(y − y′)2 − (z − z′)2 (14)

is the distance between (y, z) and (y′, z′).109

In (C. L. Rino & Ngo, 1997) it was shown that upon truncating the integrals in (9)110

and (10) at z, which imposes the forward approximation, the following recursive solu-111

tion can be obtained:112

S‖,y(zn+1) =
(
Si
‖,y(zn+1)∓ Λn+1,nS‖,y(zn)

)
/ (1/2± Λn+1,n+1) (15)

where113

Λn,m =

∫ ∆z/2

−∆z/2

kH
(1)
1 (k∆ρ(f(zm), f(z′ − zn); zm, z

′ − zn))

∆ρ(f(zm), f(z′ − zn); zm, z′ − zn))
ς(zm, z

′)dz′ (16)

ς(zm, z
′) = (f(zm)− y′)− ∂fz(zm)

∂z
(zm − z′) (17)

Λn,n =
∂2f(zn)

∂2z
/

(
1 +

∂2f(zn)

∂2z

)
(18)
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The upper sign is used for the parallel (Dirichlet) induced source. The lower sign is used114

for the perpendicular (Neuman) induced source. The total field is advanced from zn to115

zn+1 by evaluating the forward contributions to the fields at zn+1:116

E‖(y, zn+1) = E0
‖(y, zn+1)

− i
4

∫ zn+1

z0

H
(1)
0 (kρ(y, f(z′); zn+∆z, z

′))S‖(z
′)dz′ (19)

Ey(y, zn+1) = E0
y(y, zn+1)

+
i

4

∫ zn+1

z0

∂H
(1)
0 (kρ(y, f(z′); zn+∆z, z

′))

∂N ′
Sp(z′)dz′ (20)

The integrals in (19) and (20) have contributions from the induced source term at117

zn and a singular contribution from the induced source at zn+1. This is shown schemat-118

ically in Figure 1. The blue arrows represent the contributions from induced sources. The119

orange arrow represents the freely propagating field components. To complete the re-120

cursion it is necessary to calculate the total field on the surface. For parallel components121

the total field on the surface is zero, whereby computing the field on the surface and its122

cancellation by the induced source is unnecessary. For the perpendicular component the123

surface field is finite, whereby computing source term is necessary and demanding be-124

cause of the Green function singularity on the surface.

Figure 1. Schematic diagram of total field contributions for calculating the field at zn+1 from

the known field and its sources at zn.

125

If the total fields and their source functions are known at z = zn, the source func-126

tions can be advanced to z = zn+1 by using (15). The total field can then be updated127

by evaluating (19) and (20). This was demonstrated in (C. L. Rino & Ngo, 1997) with128

both sinusoidal and stochastic surface variations at 1 GHz, although it was stated er-129

roneously that the source at zn+1 was unnecessary. The calculation is repeated here for130

a plane conducting surface at 10 MHz. Figure 2 shows the intensities of the perpendic-131

ular (upper frame) and parallel (lower frame) field components initiated by an Ey field132

with the intensity and phase variation adjusted to launch a downward propagating beam.133

The lower frame, which was initiated with an identical excitation field, could represent134
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either Ex or Ez. The surface reflection calculations here were performed for propaga-135

tion in a vacuum. The sampling was adjusted to conserve the reflected field total inten-136

sity.137

Figure 2. Field Intensity in dB units for perpendicular (upper frame) and parallel (lower

frame) surface reflections from downward propagating 10 MHz beam.

Note that the scalar field component intensities are independent and identical above138

the surface. Impedance boundary conditions would couple the equations, whereby the139

field component intensities would differ, reflecting the surface conditions. Either way, the140

supporting sources and fields on the surface differ significantly. For now, only perfect con-141

ductivity will be used. It has already been noted that for the parallel component the to-142

tal field on the surface is zero, which requires the incident field to cancel the source func-143

tion field. For the perpendicular component the field on the surface is large. Consequently,144

managing the singular contribution from Green function is more demanding. Further in-145

sight can be gleaned from the method of images as discussed in the next section.146

2.2 Image Theory Methods147

It is well known that reflections from a perfectly conducting plane can be calcu-148

lated by removing the surface and placing a positive (Neuman) or negative (Dirichlet)149

image of the source below the surface. This is achieved formally by propagating the field150

with only Fourier cosine (Neuman) or sine (Dirichlet) components. The field where the151

original conducting surface existed is zero, which is automatic for an antisymmetric re-152

flection. For forward propagation applications the image field is constructed at each prop-153

agation step.154

Applying the method of images requires only manipulation of Fourier transforms,155

whereby representative data spaces are readily accommodated. Figure 3 shows a com-156

putation for a 500-by-3000 km data space, with 32768 y samples and 5000 VFPE steps,157
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which corresponds to 20 wavelengths per sample. The parallel component, which would158

apply to Ex or Ez components, was computed with the Fourier sine series. The perpen-159

dicular Ey field component was computed using the Fourier cosine series. The Ey field160

shows spurious surface reflections, which can be explained by the fact that the cosine ba-161

sis functions are finite at the surface. The fields being constructed are small near the sur-162

face, whereby propagation-step errors are amplified. However, for perfectly conducting163

surfaces, the fact that the scalar complex amplitudes of the two components are iden-164

tical, can be exploited by using sine series, which is less sensitive to surface-field errors,165

for both components.166

Figure 3. Field intensity in dB units for symmetric (upper frame) and antisymmetric (lower

frame) reflections of 10 MHz beam from a perfectly conducting plane surface.

In a later paper (C. L. Rino & Kruger, 2001), which provided the framework for167

developing the VFPE, a variant of the recursion calculation was used. The induced sur-168

face currents were computed using several integration steps. The finer propagation step169

sampling improves the calculation of the surface reflection within the coarser propaga-170

tion step typically used for incorporating the structure in the propagation medium.171

A much simpler shift-mapping method was introduced by (Kuttler & Dockery, 1991)172

and (Dockery & Kuttler, 1996). The only change needed to accommodate a non-planar173

surface is the addition of a phase shift that translates the reference to the surface:174

exp{ikg(κy)∆z} exp{iκy(f(zn)− f(zn−1))}. (21)

It was shown in both (C. L. Rino & Ngo, 1997) and (C. L. Rino & Kruger, 2001) that175

BIE and shift-map solutions agreed very well. However, the comparisons used sub-wavelength176

propagation-step sampling for both the BIE and shift-map results. For accommodating177

smooth surface reflections in VFPE split-step solutions we find that near-wavelength sam-178

pling provides good results as indicated by total field intensity conservation through the179

surface reflection.180
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3 VFPE and Ray Theory181

Solutions to the wave equation and the VFPE are constrained only by the suscep-182

tibility tensor, ∆X(y, z)χ. In particular, there is no prior identification of characteris-183

tic modes. In (C. Rino & Carrano, 2021) we showed that in a medium with gradients184

confined to the propagation direction, solutions to the two-dimensional VFPE can be185

constructed from superpositions of O and X characteristic modes. The characteristic modes186

are defined by the Appleton-Hartree equations as summarized in the (C. Rino & Car-187

rano, 2021) Appendix. 2 The more general identification of characteristic modes in in-188

homogeneous media comes from ray theory, which starts with the assumption that the189

field can be approximated locally as190

E(y, z) = E0(y, z) exp{iϑ(y, z)}, (22)

where E0(y, z) varies slowly compared to the eikonal, ϑ(y, z).191

Surfaces of constant ϑ(y, z) identify wave fronts. Rays are paths normal to the wave-192

fronts. Rays are identified by a formal minimization procedure that constructs the short-193

est paths connecting two points in the medium. The connecting rays are defined by their194

direction angles at the point of initiation. Introducing the susceptibility matrix leads to195

a quadratic equation whose roots identify the characteristic modes being traced.3 To the196

extent that ϑ = r · n along the ray, the magnitude of n defines the local refractive in-197

dex. Ray theory shows as well that the fields associated with the characteristic modes198

have orthogonal elliptical polarizations.199

Regarding comparisons between FPE realizations and ray theory, it has been ob-200

served that VFPE field structures respond to gradients in the propagation medium with201

local propagation direction changes. Spatial wavenumber intensity peaks identify local202

propagation directions. Lines connecting the tangent vectors are effectively ray paths203

(Carrano et al., 2020). To associate ray paths with characteristic modes the VFPE Ex204

and Ey field components are combined to extract orthogonal elliptically polarized field205

components. Formally,206

EM = Ex ± S · Ey. (23)

where S = i or = 1 for linear or circular incident polarization, respectively. Anticipat-207

ing the association with characteristic modes, we let M = O and M = X as tenta-208

tive mode associations.209

Figures 4 and 5 summarize extensions of the Chapman layer result introduced in210

(C. Rino & Carrano, 2021) Figures 9 and 10. 4 The upper frames in Figures 4 and 5 show211

the intensities of the candidate mode fields constructed as described above. The lower212

frames show the corresponding spectral-domain intensities plotted against normalized213

spatial wavenumber. The ±1 κy/k range includes all propagating waves. The peak in-214

tensities of the extracted modes and their spectral decompositions can be associated with215

ray positions and directions, respectively. Discontinuous direction reversals identify the216

locations of surface reflections. The extracted peak intensities and directions are shown217

in Figure 6.218

2 In the VFPE coordinate system uB = [0, sin(φB), cos(φB)]. For a horizontal B fieldφB = π/2.
3 See for example Equation (16) in (Coleman, 2008).
4 The Chapman layer is defined as

Ne = Nm exp((1 − (h−Hm)/H0 − exp(−(h−Hm)/H0)/2)) (24)

with Nm = 1012 m−3, Hm = 350 km, and H0 = 50 km. Height is measured radially from the spherical-

earth surface intercept.
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Figure 4. The upper frame shows the dB intensity of the elliptically polarized beam response

identified as the O mode. The lower frame is the corresponding spectral intensity normalized to

the wave vector magnitude in dB units.

Figure 5. The upper frame is the dB intensity opposite elliptically polarized beam response

identified as the X mode. The lower frame is the corresponding spectral intensity normalized to

the wave vector magnitude in dB units.
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Figure 6. The upper frame shows the O mode (red) and X mode (blue) peaks. The lower

frame shows the corresponding spectral-domain peaks plotted against propagation direction. The

pentagrams mark the discontinuous spectral-domain changes in propagation direction.

Figure 7 shows a comparison of the VFPE O and X mode traces from the upper219

frame of Figure 6 with ray-trace calculations from the PHaRLAP code. 5 The compar-220

ison shows that the VFPE solutions (red) are not rotated by the ionosphere as strongly221

as the ray-trace solutions (blue). Considerable care was taken to ensure that the geo-222

metric translations and the parameter specifications are consistent. We believe the re-223

sulting bias is real and can be attributed to an approximation made in deriving the VFPE224

as follows.225

The approximation used to evaluate Equation (24) in (C. Rino & Carrano, 2021)226

is reproduced here as227

k2

∫ ∫
S(−→η ′)G(−→η ,−→η ′)d−→η ′ ' ik

2
S(−→η ), (25)

where S(−→η ) = ∆X(−→η , z)χE(−→η , z)228

G(r, r′) = [I + (1/k)
2∇∇]G |r− r′|) (26)

is the dyadic Green function, and229

G |r− r′|) =
exp{ik |r− r′|}

4π |r− r′|
(27)

is the scalar Green function. The approximation follows from the observation that if S(−→η ′)230

is constant over the defining range of the Green function, the integration of the dyadic231

5 PHaRLAP is a 3-D magnetoionic Hamiltonian ray tracing engine developed by the Australian Defence

Science and Technology Organisation (DSTO) (Cervera & Harris, 2014).
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Green function can be evaluated as232 ∫ ∫
G(
∣∣−→η −−→η ′∣∣)d−→η ′ = i/ (2k) . (28)

Neglecting the variation of S(−→η ′) and applying (28) produces the VFPE induced-source233

contribution.234

Figure 7. The upper frame compares the O-mode trace shown in the upper frame of Figure

23 (red) with the O-mode trace predicted by the PHaRLAP code (blue). The lower frame shows

the same comparison for the X-mode trace and the PHaRLAP code prediction.

Validating the approximation is difficult. However, if the variable component, ∆X(−→η ),235

is the leading term in a perturbation series, the corrected form of (25) would have ∆X(−→η )+236

∆X(−→η )2/2. Although the correction is purely conjectural, it is very effective. Figure 8237

reproduces the comparison in Figure 7 with the corrected VFPE result. The PHaRLAP238

raytrace and the VFPE results are indistinguishable on the scale plotted. The same agree-239

ment is found when the magnetic field direction is varied from the horizontal direction240

for the example shown.241

To demonstrate that a disparity between ray-trace and VFPE results might be ex-242

pected, consider the simplified form of the Haselgrove equations when B = 0. Equa-243

tion (39) in (Coleman, 2008) is the B = 0 limiting form, which is rewritten here as244

n
d2r

ds2
+
dn

ds

dr

ds
= ∇n, (29)

where s represents distance along the ray, and n is a scalar refractive index. The result245

is well known. Equation (3.2.1.2) in (Born & Wolf, 1999) follows a direct derivation from246

the scalar wave equation. From (29) we see that an incremental ray-trace step starts with247

the gradient of the refractive index, which is functionally similar to the phase pertur-248

bation that initiates an FPE integration step. However, the FPE propagation step im-249
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Figure 8. Recalculation of VFPE result shown in Figure 7 with VFPE correction.

poses no further direction change. In (29) the curvature term, d2r/ds2, imposes an ad-250

ditional ray direction change from the direction of the refractive index gradient. Evidently,251

the quadratic correction provides the additional VFPE directional change needed to match252

the ray trace. For the scalar ionosphere, n =
√

1− (ω/ωp)2. As a qualitative exten-253

sion of the scalar ray theory, the Appleton-Hartree O and X refractive indices can be sub-254

stituted for n in (29). Although the modified scalar theory is not accurate, it has been255

used for interpreting HF diagnostic measurements (Tsai et al., 2010). As a general rule,256

ray theory redirects a wavefront more strongly than an uncorrected separation of prop-257

agation and media interaction.258

Although unrelated to ionospheric redirection of rays, we note that surface reflec-259

tions are accommodated by truncating rays that intercept the surface and initiating a260

new ray in the direction reflected about the known surface normal. The VFPE reflec-261

tion involves a translation that takes place over several kilometers. The direction changes262

of the corrected VFPE rays coincide with the ray intercepts.263
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4 Summary and Future Applications264

Our previous paper (C. Rino & Carrano, 2021) extended the scalar FPE to accom-265

modate polarizations effects, which are important for HF propagation. This paper fur-266

ther extends the development to accommodate boundary reflections. The formalism is267

fully three-dimensional. However, computational requirements are reduced significantly268

for two-dimensional propagation and a spherical-earth perfectly conducting boundary269

surface. Near-wavelength sampling (2 wavelengths per sample) in the propagation di-270

rection is necessary to reproduce specular surface reflections accurately. Critical sam-271

pling (2 samples per wavelength) is a guide for FPE applications in general. We believe272

the sampling used is adequate to accommodate stochastic structure, which will be ex-273

plored in future applications.274

With regard to ray tracing, we emphasized that both the wave equation and the275

VFPE approximation are constrained only by the susceptibility matrix. Their is no prior276

identification of characteristics modes. We identified characteristic-mode candidates in277

much the same way that they would be identified with real field measurements, namely278

by extracting orthogonal field polarization components. We initiated the calculations with279

contrived narrow beams concentrated in both direction and position. We showed that280

the direction and position of the polarization-dependent fields could be measured through281

ionospheric reflections and surface reflections.282

The measured rays were compared to predictions using the PHaRLAP code. We283

found that the PHaRLAP rays were consistently refracted more than the VFPE rays.284

We attributed this bias to a VFPE approximation, which incorporates the media inter-285

action as a phase perturbation. We found that a quadratic correction eliminated the bias,286

although we have no rigorous derivation of the correction term. However, any applica-287

tion of the scalar FPE or parabolic wave equation is subject to the bias, which suggests288

replacing ∆X with ∆X + ∆X2/2 whenever applications are used.289

The development of a vector extension of scalar VFPE was undertaken to gener-290

ate simulations for improved HF direction finding, communications, and diagnostics in291

highly disturbed environments. Scalar simulations have been very effective for design-292

ing robust GNSS systems (Xu et al., 2019). Simplified scalar FPE solutions underly the293

simulations used for the evaluations. The VFPE is the starting point for similar HF sys-294

tem evaluations.295
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