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Abstract

"The Theory of Scintillation with Applications in Remote Sensing" was
published in 2011. The website https://chuckrino.com was started as a
forum for discussing remote sensing applications of electromagnetic (EM)
wave propagation in transparent media. The underlying phenomenon is
electromagnetic (EM) wave propagation in transparent media, specifically
the earth’s ionosphere and atmosphere. EM waves are vector fields gov-
erned by Maxwell’s equations. Linear constitutive relations characterize
the EM field interactions with propagation media. Scintillation refers
to irregular variations imparted to signal parameters that have traversed
structured regions.

The physical processes that cause structure development comprise an
engaging theory in its own right. Propagation theory connects parame-
terized remote diagnostic observables with complementary parameterized
measures of the in situ structure. Parameters can be estimated with
established procedures that reconcile diagnostic measurements with the
theoretical predictions.

In the decade that has passed since the book was published more re-
fined interpretations have revealed limitations and new applications of the
theory. A set of MatLab procedures accompanied the publication. This
report is the first part of a review and update of the original publication
and MatLab procedures.

1 Introduction

Formally, scintillation is a stochastic modulation imparted to electromagnetic
(EM) fields propagating in transparent inhomogeneous media. EM fields initi-
ated by the sun and a plethora of other extraterrestrial sources provided the
earliest scintillation observations. Following the launch of Sputnik in 1957
[REF] artificial earth satellite sources began to supplement natural sources.
The Wideband Satellite, launched in 1976, was dedicated to scintillation obser-
vations. The first global positioning satellites (GPS) were launched in 1978
[REF]. When "The Theory of Scintillation with Applications in Remote Sens-
ing" Rino [1] (hereafter ScintTheory) was published in 2011, the global naviga-
tion satellite system (GNSS) was becoming the primary source of ionospheric
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structure diagnostics. This document reviews ScintTheory in light of new the-
oretical insights and new diagnostic applications.
Propagation theory provides the theoretical framework for characterizing the

structure imparted to EM fields propagating in structured media. With a formal
incorporation of stochastic processes statistical measures of the evolving fields
can be related analytically to statistical measures of the media structure. For
real-world applications the transition between structure that admits analytic
characterization and structure that can be characterized only with statistical
measures must be identified. The desired end result is a complementary set of
simulation and diagnostic procedures supported by a common theory.
The statistical theory summarized in Chapter 3 of ScintTheory is confined

to propagating fields that subtend a narrow range of propagation angles. The
development follows from a forward propagation equation (FPE), which is a gen-
eralization of widely used multiple phase screen (MPS) split-step integration.
The generalization replaces the parabolic propagator normally used for MPS
applications with a an exact wide-angle propagator. Recent applications of the
FPE to HF propagation was demonstrated in two Rino and Carrano companion
papers [2] and [3]. A disparity was found between FPE calculations of a nar-
row HF beam refracted by an ionospheric layer and ray-trace calculations of the
beam trajectory. The source of the disparity was an inconsistent application
of the unrestricted propagation operator. This document revisits the develop-
ment in the Rino and Carrano papers to identify FPE limitations and introduce
alternative albeit computationally demanding procedures that are well know in
acoustic and seismic applications of propagation theory. Whereas theoretical
results derived from the restricted FPE fully accommodate GNSS diagnostic
measurements, the extension to HF remains a work in progress that will be
summarized.

2 Propagation in Inhomogeneous Media

Chapters 1 and 2 of ScintTheory developed a first-order differential equation 1 ,
which was referred to as the forward propagation equation (FPE). The multiple
phase screen (MPS) method is formally a split-step integration of the FPE.
All subsequent results in ScintTheory followed from the FPE. The theoretical
results that comprise the statistical theory of scintillation, as summarized in
Chapter 3 of ScintTheory, are applicable only to fields that subtend a narrow
range of propagation angles, whereas the MPS propagator is unrestricted. This
seems to imply that the FPE is more general than the parabolic wave equation.
However, applications of the FPE at HF frequencies revealed a disparity between
refracted narrow beam fields and ray theory predictions. The source of the
disparity was known in scalar acoustic propagation theory. Here we review
the development in Rino and Carrano [2] to provide a consistent treatment of
forward propagation in inhomogeneous media with large-scale and small-scale
structure.

1Equation (2.2) in ScintTheory.
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The starting point is Maxwell’s equations. We assume that the media struc-
ture evolves slowly enough to be frozen over typical measurement intervals.
Under this assumption Maxwells equations can be written in the following time-
harmonic form with no further limiting assumptions:

∇×E = −iωB (1)

∇×H = iωD (2)

B=µ0H (3)

D = ε0ε ·E = 0, (4)

The vector fields E and H represent electric and magnetic field intensities. The
vector fields D and B represent electric and and magnetic induction fields. The
temporal f = ω/(2π) frequency in Hz with ω is the radian angular frequency.
The parameters µ0 and ε0 are fundamental constants that define the speed of
light,

c = 1/
√
µ0ε0. (5)

The dielectric tensor, ε, is defined as

ε = I +Xχ, (6)

where I is the identity matrix and Xχ is the susceptibility matrix, which is
written as a product of a spatially varying scalar and a 3 × 3 tensor. Depar-
tures from homogeneity are defined by the frequency-dependent scalar, X. A
complete definition of Xχ for the standard ionosphere is presented in the Rino
and Carrano [2] appendix, which includes the Appleton Hartree equations. All
the quantities have time implicit time variation exp{iωt}. The formulation
characterizes the spatial evolution of fields initiated by an impressed source
field.
From (1) and (3) with substitutions from (2) and (4) a single vector equation

for E can be derived. The vector wave equation follows after substitution of a
standard vector identity for ∇×∇×E:

∇2E(r) + k2E(r) = −X(r)χE(r) +∇ (∇ ·E) (7)

Regarding the divergence , ∇ ·E, the textbook "Waves and Fields in Inhomo-
geneous Media" Chew [4] avoids explicit treatment of the divergence term by
accommodating only homogeneous subregions defined by discontinuous bound-
aries, e. g. layers and discrete scatterers. Within homogeneous subregions ∇ ·
E = 0. Induced sources on the boundaries support discontinuous field changes.
Strictly speaking, only a homogeneous medium can support divergence-free E
and H fields. For example if we let

χ = V−1DV, (8)

where D is a diagonal matrix of eigen values and the columns of V are eigen
vectors, substituting V−1E(x, ρ) into the wave equation with ∇ · E = 0 leads
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to independent scalar wave equations, which cannot change the direction of the
vector fields. Consequently, solutions to the scalar wave equation

∇2ψ(r) + k2ψ(r) = −X(r)χψ(r), (9)

which conserve total intensity, must be interpreted as projections of the vector
field.
To facilitate numerical exploration, structure variation will be confined to

the xy plane, with no variation along the z axis. Two-dimensional propagation
theory is characterized by the scalar wave equation

∇2ψ (x, y) + k2ψ (x, y) = −k2X (x, y)ψ (x, y) . (10)

For ionospheric profiles

X (x, y) = 4πNe (x, y) /(rek
2) (11)

where Ne is the electron density and re = 2.819740289×10−15 m is the classical
electron radius. Directed propagation will be defined with respect to the x axis.
Consider an initiating field

ψ0(y) =

∫
ψ̂0(κ) exp{−iκy}dκ

2π
. (12)

Substitution into (10) will show that

ψ(x, y)=

∫
ψ̂0(κ) exp{±ik

√
1− (κ/k)2x} exp{iκy}dκ

2π
(13)

=

∫
ψ̂0(κ) exp{±ik

√
1− (κ/k)2x+ κy}dκ

2π
(14)

satisfies the homogeneous equation. The second form emphases the interpre-
tation of freely propagation fields as independently propagating plane waves
defined by the wave vector

k = [±kx(κ), κ] (15)

kx(κ) = k
√

1− (κ/k)2 (16)

At this point κ is unresticted, although the sign of kx(κ) must be chose so that
evanescent contributions from |κ| < k are damped.

2.1 Induced Source Methods

Using the formal Green’s function property

∇2H(x, y) + k2H(x, y) = −δ(x− x′, y − y′), (17)
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solutions to the scalar wave equation satisfy the integral equation for

ψ(x, y) = ψ0(x, y)− k2

∫∫
ψ(x′, y′)X(x′, y′)

×H(x− x′, y − y′)dx′dy′, (18)

which includes the source field, ψ0(x, y), explicitly. The structure contribution
is effectively an induced source. The induced source form shows that every
point in the propagation space potentially affects every other point. Solving
the integral equations amounts to reconciling all the interactions.
The Fourier transformation

∫
H

(1)
0 (kρ)/(4i) exp{−ikκy}dy =

1

2i

exp{ikg(κ) |x|}
kg(κ)

exp{ikκy}, (19)

follows from the Weyl representation

∫
H

(1)
0 (kρ)/(4i) exp{−ikκy}dy =

1

2i

exp{ikg(κ) |x|}
kg(κ)

exp{ikκy}. (20)

Using (20), (18) can be transformed to the spatial Fourier domain

ψ̂(κ;x) = ψ̂0(κ;x)− k2

∫ ∞
0

∫
ψ(x′, y′)X(x′, y′) exp{−ikκy′}dy′

× 1

2i

exp{ikg(κ)|x− x′|}
kg(κ)

dx′. (21)

At this point the summation of waves propagating in the positive (forward)
and negative (backward) x directions must be treated explicitly. Two coupled
forward and backward equations can be derived. The forward approximation
neglects backward propagating waves initiated where x′ > x:

ψ̂+(κ;x) = ψ̂0(κ;x)− k2

∫ x

0

∫
ψ+(x′, y′)X(x′, y′) exp{−ikκy′}dy′

× 1

2i

exp{ikg(κ)(x− x′)}
kg(κ)

dx′. (22)

For a small forward increments

ψ̂(κ;x+ ∆x) = ψ̂(κ;x) exp{ikg(κ)∆x}+
ik

2g(κ)

∫ ∆x

0

[∫
ψ(x+ x′, y′)X(x+ x′, y′)

×
∫
ψ(x+ x′, y′)X(x+ x′, y′)

]
dx′. (23)
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The derivation here follows the development in Rino and Carrano [2]. The
problem is no fully consistent evaluation of the term in square brackets will
preserve the implied additive separation of propagation and media-interaction
terms. As Louis Fishman has put it, the differential equations:

∂ψ̂(κ;x)

∂x
= ikg(κ)

[
ψ(κ;x) + 1/

(
2g(κ)2

) ∫
ψ(x, y′)

× X(x, y′) exp{−ikκy′}dy′] (24)

∂ψ(x, y)

∂x
= Θψ(x, y)+

k2

∫
H

(1)
0 (k |y′ − y|)/ (4i)ψ(x, y′)X(x, y′)dy′ (25)

where Θψ(x, y) represents an incremental free propagation step, are just plain
wrong! . At best, the FPE defined as

∂ψ(x, y)

∂x
= Θψ(x, y)− ik

2
X(x, y)ψ(x, y). (26)

can be applied reliably only when the parabolic form of the propagation operator
is used. Bremmer series applications [5], have yet to produce tractable induced-
source methods. Effectively, induced source methods are restricted to fields that
subtend a narrow range of propagation angles.

2.2 Factorization Methods

An alternative approach to constructing solutions to (10) uses a formal factor-
ization. Rewriting the Laplacian as a differential operator,

∇2 = ∂2/∂x2 +∇2
⊥, (27)

identifies the x axis as a propagation reference. The differential operator form
of the wave equation,(

∂2

∂x2
+∇2

⊥ + k2K(x, y)2

)
ψ(x, y) = 0, (28)

where

K(x, y)2 = I +X(x, y), (29)

can be formally factored to as

∂2

∂x2
+∇2

⊥ + k2K(x, y)2

=

(
∂

∂x
− i
(
∇⊥ + k2K(x, y)2

)1/2)
×
(
∂

∂x
+ i
(
∇⊥ + k2K(x, y)2

)1/2)
. (30)
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The factorization is strictly valid only if the factored components commute,
which would eliminate variation along the propagation direction. However,
commutation equivalence is necessary only over are integration steps.
The operator factorization form of the forward propagation equation is(

∂

∂x
− i
(
∇⊥ + k2K(x, y)

)1/2)
ψ(x, y) = 0. (31)

Approximating the square root operator with the first term ina Taylor series
expansion leads to the parabolic wave equation or Feit-Fleck approximation [6],
which is equivalent to the FPE with the propagation operator replaced by its
parabolic form. A formal operator extension to propagation in inhomogeneous
media has the general form

ψ(x, y) =

∫
ψ̂(x;κ) exp{iΩ(x;κ,K(x, y))} exp{−iκ(y − y′)}dκ

2π
, (32)

where Ω(x, y;κ,K(x, y)) is the spectral-domain counterpart of the square-root
operator developed in a series of papers by Fishman [7] [8] [9]. An intuitively
appling approximation

Ω(x;κ,K(x, y)) =

√
K(x, y)2 − (κ/k)

2
x, (33)

can be applied over incremental slabs. The approximation was rediscovered in
acoustics by [10]. However, the y variation precludes effi cient FFT evaluation,
which makes evaluation very time consuming.

2.3 Parabolic Differential Equation Methods

The square root operator can be approximated by implementing analytic ap-
proximations to the square-root function. The approximation is improved by
substituting ψ(x, y) = exp{ikx}U(x, y) in the operator form of the wave equa-
tion: (

1

k2

∂2

∂x2
− 1 +K(x, y)2 +∇2

⊥/k
2

)
U(x, y) = 0. (34)

Following Collins, [11], the PDE can written as

∂U(x, y)

∂x
= ik

(
−1 +

√
1 +XP

)
U(x, y) (35)

where
XP = K(x, y)2 +∇2

⊥/k
2. (36)

The Pade approximation, which treats XP as a complex variable, is defined in
terms of precalculated coeffi cients such that

−1 +
√

1 +XP '
n∑
j=1

αj,nXP

1 + βj,nXP
. (37)
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A split-step solution is implemented with phase corrections,

u(x+ ∆x) = exp{ik∆x(−1 +
√

1 +XP )}u(x), (38)

which leads to the replacement of the summation by a product form

n∏
j=1

1 + λj,nXP

1 + µj,nXP
. (39)

Recognizing that XP contains second derivatives, the coeffi cients are chosen
to ensure that the differential-equation solution is stable and accurate. The
PDE method has produced accurate forward propagation solutions. However,
selections of coeffi cients and sampling is problem specific.
The book "Parabolic equation methods for electromagnetic wave propaga-

tion," by Levy [12] presents a complete treatment of parabolic wave equation
(PWE) methods including stochastic structure, and boundaries.

2.4 Eigenvector Methods

As demonstrated in Collins and Segman [11], the most demanding inhomoge-
neous media problems can be implemented with the Pade approximation. How-
ever, there is a way to construct an exact solution to the forward approximation

∂ψ(x, y)

∂x
= ikQ(x, y)ψ(x, y),

where
Q = k

√
1 +X +∇2

⊥/k
2. (40)

Following [13], consider the formal vector matrix solution

−→
ψ= exp{ik∆x

←→
Q }−→ψ (41)

where
←→
Q is a matrix square root. To interpret the matrix operator

←→
Q , let

ρn = exp{2πin/N}, (42)

which is an eigenvector or the matrix form of the discrete Fourier transform
(DFT):

←→
R = [ρmn ] n => col, m => row
←→
R
−→
ψ , (43)

where
←→
R ′
←→
R =diag(1/N). It follows that with

←→
K = −diag( (κn/k)

2 ) (44)
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The matrix argument of the square root can be written as

←→
Q =

√←→
R ′
←→
K
←→
R /N + diag(1 +Xy) (45)

There is an exact solution for Xy = 0. Rewriting
←→
Q as

←→
Q =

√←→
R ′(
←→
K +

←→
I )
←→
R /N (46)

the eigen vectors of ←→
Q 2 =

←→
R ′(
←→
K +

←→
I )
←→
R /N (47)

are the column vectors of
←→
R /
√
N A formal matrix solution that advances any

starting field can be constructed as follows

−→
ψ =

←→
R

((←→
R ′
−→
ψ 0

)
exp

{
−k∆x

√
diag(1− (κn/k)

2
)

})
; (48)

which can be rewritten as

−→
ψ =

(←→
R ′
−→
ψ 0

)
exp

{
−k∆x

√
diag(1− (κn/k)

2

}
←→
R (49)

The computation follows from an eigenvector decomposition of
←→
Q 2

←→
Q 2 =

←→
Ξ ′
←→
Λ
←→
Ξ . (50)

The same eigenvectors define
←→
Q

←→
Q =

←→
Ξ ′
√
←→
Λ
←→
Ξ ′ (51)

The final solution is

−→
ψ=
←→
Ξ ′ exp{ik∆x

√
←→
Λ }←→Ξ −→ψ0 (52)

As a consistency check for free space

diag(
←→
Λ ) =

√
1− (κn/k)

2
),
←→
Ξ = R/

√
N. (53)

In effect, the complexity of implementing the Pade approximation has been
traded for the complexity of computing the eigenvectors of a large matrix. How-
ever, robust eigenvector utilities are available. For exploration purposes, the
ease of implementation make eigenvector solutions very attractive.
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2.5 Ray Optics

Whether FPE, PDE, or OHE solutions are implemented, other than internal
consistency it is desirable to have a exact result for verification. With χ = I,
the formally exact defining equation is

∇2E+k2E = ∇(∇ ·E)− k2XE. (54)

Ray optics is based on the assumption that the field associated with a prop-
agating field can be apporoximated locally as single plane wave with a slowly
vary amplitude and a smoothly varying phase. Following the development in
Born and Wolf [14, Chapter 3.2], E(r) is approximated as

E(r) = Ẽ(r) exp{ikϑ(r)}. (55)

Inserting (55) into the vector wave equation and retaining only terms that are
first-order in ∆X leads to the to the defining equation

(∇ϑ)
2

= n2, (56)

where
n2 = 1 +X. (57)

The identification of n as a refractive index follows from the definition

∇ϑ = n (58)

where ϑ = kn · r. Wavefronts are defined by contours of constant ϑ. If s
represents distance along a ray, normal to ∇ϑ, the defining equation can be
rewritten as

n
dr

ds
= ∇ϑ. (59)

Eliminating ϑ, leads to the ray equation

d

ds

(
n
dr

ds

)
= ∇n

d2r

ds2
+

dn

nds

dr

ds
=
∇n
n
. (60)

Let

τ =
dr

ds
, (61)

whereby

dτ

ds
+

dn

nds
τ =

∇n
n

(62)

dτ

ds
+ s·

(
∇n
n

)
τ =

(
∇n
n

)
, (63)
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Figure 1: Chapman layer over curved earth with ray trace overlaid.

where s is a unit vector along the ray direction. The defining ray equations
are fully three dimensional an impose no constraint on the structure other than
a self checking smoothness. Reflecting boundaries are readily accommodated.
A complete treatment of ray theory and its extension to vector fields is

demanding and leads to advanced mathematical procedures. For example, the
ray theory in the seminal text "The propagation of radio waves," by Budden
[15] is not presented until Chapter 14. The implementation of the Haselgrove
equations requires variational calculus methods Colman [16]. However, for our
purposes here an implementation of the ray equations here will suffi ce.

3 Examples

3.1 Ray Trace

A two-dimensional propagation calculation is defined by a height, a propagation
distance, a starting field, a specification of X and frequency, f . An absorbing
upper boundary accommodates escaping energy. A reflecting surface or imple-
mentation of the forward boundary method described in Rino and Carrano [3]
reflects fields at the lower boundary. Current implementations of the PDE
and OHE solutions accommodate conducting boundary surfaces with Dirichlet
boundary conditions. Figure 1 shows a Chapman layer at 300 km over a smooth
spherical-earth boundary. A ray trace from the source at 50 kM is overlaid.
A direct implementation of (60) modified to reflect rays from a smoothly vary-
ing boundary surface was used to calculate ray paths. For this application,
y represents height and z represents propagation distance. There is no varia-
tion along x. Altitude is measured along normal radials from the surface as a
function of y and z. A layer at a fixed distance from a curved surface creates a
range-dependent propagation environment.
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Figure 2: Upper frame FPE intensity with ray path overlay.

3.2 FPE

Although the complete propagation grid was used for the FPE simulations in
Rino and Carrano [2], [3], SSPDE and OHE applications require significantly
more computation.
A smaller truncated propagation space is used. The upper frame of Figure 2
shows the FPE field intensity for beam propagation into a refracting Chapman
layer. A ray trace initiated at the 20 km source height with the measured beam
direction is overlaid (white). The lower frame shows the spectral intensity with
the ray trace direction overlaid. As consistently observed with FPE propagation
in highly refractive environments, the FPE solution under estimates refraction.
However, without the ray trace for comparison the error might not be noticed.
The upper frame in Figure (3) shows the total intensity of the FPE field, which
is invariant as long as the field is confined to the propagation space. The loss at
the surface reflection is caused by the shift-map implementation of the boundary
variation. The lower frame shows the spectral domain peak intensity with the
ray direction overlaid, which varies in response to induced waveform variations.

3.3 SSPDE

Figures 4 and 5 summarize an SSPD simulation of the Chapman layer environ-
ment with a plane conducting layer. The upper frame in 4 summarizes the
beam intensity with the ray trace overlaid. The lower frame shows the spectral
intensity with the ray direction overlaid. The spectral domain peak does not
align with the ray direction evidently because of the distortion of the spectrum
as the beam peak narrows in response to the interaction with layer. Figure 5
shows the integrated intensity and the beam peak intensity, which increases and
decreases in response to induced beamwidth changes. The vertical sampling is
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Figure 3: Upper frame shows the integrated intensity of the field, which should
be 1. The lower frame shows the spectral domain peak intensity.

12 per wavelength, 6 samples per wavelength along the propagation direction,
and 8 Pade coeffi cients. The over sampling and the number of Pade coeffi cients
was determined by trial and error.
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Figure 4: SSPD intensity (upper frame) and spectral intensity (lower frame).

Figure 5: SSPDE total intensity (upper frame) and peak intensity (lower frame).
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Figure 6: OHE intensity (upper frame) and spectral intensity (lower frame).

3.4 OHE

Figures 6 and 7 summarize the OHE calculation. The OHE calculation is
performed with the same critical sampling used for the FPE calculation. The
eigenvector computation is computationally demanding. However, for propa-
gation in a transversely inhomogeneous medium only one evaluation is needed.
It is encouraging that results from two dissimilar methods give nearly identical
results.
Belyaev et. al [13] computed the refraction of a beam injected into a neutral

layer, which effectively trapped the beam. Figure 8 shows a similar calculation
at 10 MHz. The overlaid ray trace required height and direction adjustments
to achieve agreement with the wave intensity peak. The ray angle is con-
sistently calculated, but shows significant departures from the wave spectrum
peak. Figure 9 shows the waveform intensity and spectrum at the point of max-
imum departure of the ray angle from the spectral domain peak. Because of
the asymmetry the spectral peak is displaced from the true waveform direction.

3.5 Commutation limitation

Factorization methods are strictly valid only if there is no range variation. How-
ever, if range variation is neglibible over a propagation step, SSPDE and OHE
is constrained mainly by sampling. Although the propagation environment
defined by a layer above a curved surface is range dependent, a more stringent
variation is realized by a lens like symmetric gaussian structure. Figure 10
shows the gaussian lens refractive index with horizontally initiated rays over-
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Figure 7: OHE total intensity (upper frame) and peak intensity (lower frame).

Figure 8: OHE example of refraction by a gaussian layer.
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Figure 9: OHE waveform and spectrum at the point of maximum ray direction
separation.

laid. A well designed lens will refract incident parallel rays to a focal point as
shown. For verifying SSPDE two-horizontal beams were symetrically located
about the beam center. Figures 11 and 12 summarize the result. The SSPDE
captures the focal point defined by the intersection of the beam rays accurately,
which indicates the smooth range do not translate to comutation errors.
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Figure 10: Refractive index of gaussian lens with horizontially initiated rays
overlaid.
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Figure 11: Summary of SSPDE parallel beam propagation through gaussian
lense with ray traces overlaid.

Figure 12: Total intensity (upper frame) and peak intensity (lower frame) of
SSPDE simulation of parallel beam field.
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4 Summary of Propagation in Smoothly Vary-
ing Media

Developing tractable methods for calculating propagation in smoothly varying
media remains a work in progress as well as validating procedures for incorpo-
rating structure. The problem becomes acute when it is necessary to iden-
tify characteristic with accurate polarization predictions. The scalar codes
demonstrated provide starting points and guidelines. Results should be viewed
guardedly.
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