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Abstract

"The Theory of Scintillation with Applications in Remote Sensing"
was published in 2011. The website https://chuckrino.com was started
as a forum for discussing remote sensing of electromagnetic (EM) waves
propagating through transparent structured media. The underlying phe-
nomenon is electromagnetic (EM) wave propagation in transparent me-
dia, specifically the earth’s ionosphere and atmosphere. EM waves are
vector fields governed by Maxwell’s equations. Linear constitutive rela-
tions characterize the EM field interactions with the propagation medium.
Scintillation refers to irregular variations imparted to signal parameters
that have traversed structured regions.

The physical processes that cause structure development comprise an
engaging theory in its own right. Propagation theory connects parame-
terized remote diagnostic observables with complementary parameterized
measures of the in situ structure. Parameters can be estimated with
established procedures that reconcile diagnostic measurements with the
theoretical predictions.

In the decade that has passed since the book was published more re-
fined interpretations have revealed limitations and new applications of the
theory. A set of MatLab procedures accompanied the publication. This
report is the first part of a review and update of the original publication
and MatLab procedures.

1 Introduction

Scintillation is formally a stochastic modulation imparted to electromagnetic
(EM) fields propagating in transparent inhomogeneous media. EM fields ini-
tiated by the sun and a plethora of other extraterrestrial sources provided the
earliest scintillation observations. Following the launch of Sputnik in 1957 artifi-
cial earth satellite sources began to supplement natural sources. The Wideband
Satellite, launched in 1976, was dedicated to scintillation observations. The first
global positioning satellites (GPS) were launched in 1978. When "The Theory
of Scintillation with Applications in Remote Sensing" Rino [1] (hereafter Scint-
Theory) was published in 2011, the global navigation satellite system (GNSS)
was becoming the primary source of ionospheric structure diagnostics. This
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document reviews ScintTheory in light of new theoretical insights and new di-
agnostic applications. Rino and Zavrotony [2, Chapter 29 6 Radio Scintillation
History] reviews the history of radio scintillation.
Propagation theory provides the theoretical framework for characterizing the

structure imparted to EM fields propagating in structured media. With a formal
incorporation of stochastic processes, statistical measures of the evolving fields
can be related analytically to statistical measures of the media structure. For
real-world applications the transition between structure that admits analytic
characterization and structure that can be characterized only with statistical
measures must be identified. The desired end result is a complementary set of
simulation and diagnostic procedures supported by a unified theory.
The statistical theory summarized in Chapter 3 of ScintTheory is confined

to propagating fields that subtend a narrow range of propagation angles. The
development follows from a forward propagation equation (FPE), which is a gen-
eralization of widely used multiple phase screen (MPS) split-step integration.
The generalization replaces the parabolic propagator normally used for MPS
applications with a an exact wide-angle propagator. Recent applications of the
FPE to HF propagation was demonstrated in two Rino and Carrano companion
papers [3] and [4]. A disparity was found between FPE calculations of a nar-
row HF beam refracted by an ionospheric layer and ray-trace calculations of the
beam trajectory. The source of the disparity was an inconsistent application
of the unrestricted propagation operator. This document revisits the develop-
ment in the Rino and Carrano papers to identify FPE limitations and introduce
alternative albeit computationally demanding procedures that are well know in
acoustic and seismic applications of propagation theory. Whereas theoretical
results derived from the restricted FPE fully accommodate GNSS diagnostic
measurements, the extension to HF remains a work in progress.

2 Propagation in Inhomogeneous Media

Chapters 1 and 2 of ScintTheory introduced a first-order differential equation
1 , which was referred to as the forward propagation equation (FPE). The FPE
is a manifestation of the multiple phase screen (MPS) method. All subsequent
results in ScintTheory followed from the FPE. The theoretical results that
comprise the statistical theory of scintillation, as summarized in Chapter 3
of ScintTheory, are applicable only to fields that subtend a narrow range of
propagation angles, whereas the MPS propagator is unrestricted. This seems to
imply that the FPE is more general than the parabolic wave equation. However,
applications of the FPE at HF frequencies revealed a disparity between refracted
narrow beam fields and ray theory predictions. The source of the disparity was
known in scalar acoustic propagation theory. Here we present a more complete
development of the material presented in Rino and Carrano [3] to identify the
limitations explicitly.

1Equation (2.2) in ScintTheory.
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The starting point is Maxwell’s equations. We assume that the media struc-
ture evolves slowly enough to be frozen over typical measurement intervals.
Under this assumption Maxwells equations can be written in the following time-
harmonic form with no further limiting assumptions:

∇×E = −iωB (1)

∇×H = iωD (2)

B=µ0H (3)

D = ε0ε ·E = 0. (4)

The vector fields E and H represent electric and magnetic field intensities.
The vector fields D and B represent electric and and magnetic induction fields,
f = ω/(2π) is the temporal frequency in Hz, and ω is the angular frequency in
radians per second. The parameters µ0 and ε0 are fundamental constants that
define the speed of light,

c = 1/
√
µ0ε0. (5)

The dielectric tensor, ε, is defined as

ε = I +Xχ, (6)

where I is the identity matrix, Xχ is the susceptibility matrix, which is written
as a product of a spatially varying scalar, X, and a 3× 3 tensor, χ. Departures
from homogeneity are defined by the frequency-dependent scalar, X. A com-
plete definition of Xχ for the standard homogeneous ionosphere is presented
in the Rino and Carrano [3] appendix, which includes the Appleton Hartree
equations. All the quantities have the implicit time variation exp{iωt}. The
formulation characterizes the spatial evolution of fields initiated by an impressed
source field.
From (1) and (3) with substitutions from (2) and (4) a single vector equation

for E can be derived. The vector wave equation follows after substitution of a
standard vector identity for ∇×∇×E:

∇2E(r) + k2E(r) = −X(r)χE(r) +∇ (∇ ·E) (7)

Regarding the divergence, ∇ · E, the textbook "Waves and Fields in Inhomo-
geneous Media" Chew [5] avoids explicit treatment of the divergence term by
accommodating only homogeneous subregions defined by discontinuous bound-
aries, e. g. layers and discrete scatterers. Within homogeneous subregions ∇ ·
E = 0. Induced sources on the boundaries support discontinuous field changes.
Strictly speaking, only a homogeneous medium can support divergence-free E
and H fields. For example if we let

χ = V−1DV, (8)
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where D is a diagonal matrix of eigen values and the columns of V are eigen
vectors, substituting V−1E(x,ρ) into the wave equation with ∇ · E = 0 leads
to independent scalar wave equations, which cannot change the direction of the
vector fields. Consequently, solutions to the scalar wave equation

∇2ψ(r) + k2ψ(r) = −X(r)χψ(r), (9)

which conserve total intensity, must be interpreted as unspecified projections of
the measurable vector field.
To facilitate numerical exploration of the scalar wave equation, structure

variation will be confined to the xy plane, with no variation along the z axis
whereby

∇2ψ (x, y) + k2ψ (x, y) = −k2X (x, y)ψ (x, y) . (10)

For ionospheric profiles

X (x, y) = 4πNe (x, y) /(rek
2) (11)

where Ne is the electron density and re = 2.819740289×10−15 m is the classical
electron radius. Directed propagation will be defined with respect to the x axis.
Consider an initiating field

ψ0(y) =

∫
ψ̂0(κ) exp{−iκy}dκ

2π
. (12)

Substitution into (10) will show that

ψ(x, y)=

∫
ψ̂0(κ) exp{±ik

√
1− (κ/k)2x} exp{iκy}dκ

2π
(13)

=

∫
ψ̂0(κ) exp{±i[k

√
1− (κ/k)2x+ κy]}dκ

2π
(14)

satisfies the homogeneous equation. The second form emphases the interpre-
tation of freely propagation fields as independently propagating plane waves
defined by the wave vector

k = [±kx(κ), κ] (15)

kx(κ) = k
√

1− (κ/k)2 (16)

At this point κ is unrestricted, although the sign of kx(κ) must be chosen so
that evanescent contributions from |κ| < k are damped.

2.1 Induced Source Methods

Induced sources are manifestations of the Huygens-Fresnel principle. Using the
formal Green’s function property

∇2H(x, y) + k2H(x, y) = −δ(x− x′, y − y′), (17)
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solutions to the scalar wave equation satisfy the integral equation for

ψ(x, y) = ψ0(x, y)− k2

∫∫
ψ(x′, y′)X(x′, y′)

×H(x− x′, y − y′)dx′dy′, (18)

which includes the source field, ψ0(x, y), explicitly. The structure contributions
are effectively induced sources, which connect every point in the propagation
space potentially with every other point. Solving the integral equations amounts
to determining induced sources that reconcile all the interactions.
The Fourier transformation

∫
H

(1)
0 (kρ)/(4i) exp{−ikκy}dy =

1

2i

exp{ikg(κ) |x|}
kg(κ)

exp{ikκy}, (19)

follows from the Weyl representation

∫
H

(1)
0 (kρ)/(4i) exp{−ikκy}dy =

1

2i

exp{ikg(κ) |x|}
kg(κ)

exp{ikκy}. (20)

Using (20), (18) can be transformed to the spatial Fourier domain

ψ̂(κ;x) = ψ̂0(κ;x)− k2

∫ ∞
0

∫
ψ(x′, y′)X(x′, y′) exp{−ikκy′}dy′

× 1

2i

exp{ikg(κ)|x− x′|}
kg(κ)

dx′. (21)

At this point the summation of waves propagating in the positive (forward)
and negative (backward) x directions must be treated explicitly.Two coupled
forward and backward equations can be derived. The forward approximation
neglects backward propagating waves initiated where x′ > x:

ψ̂
+

(κ;x) = ψ̂0(κ;x)− k2

∫ x

0

∫
ψ+(x′, y′)X(x′, y′) exp{−ikκy′}dy′

× 1

2i

exp{ikg(κ)(x− x′)}
kg(κ)

dx′. (22)

For a small forward increments

ψ̂(κ;x+ ∆x) = ψ̂(κ;x) exp{ikg(κ)∆x}+
ik

2g(κ)

∫ ∆x

0

[∫
ψ(x+ x′, y′)X(x+ x′, y′)

×
∫
ψ(x+ x′, y′)X(x+ x′, y′)

]
dx′. (23)

The derivation here follows the development in Rino and Carrano [3]. The
problem is no fully consistent evaluation of the term in square brackets will
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preserve the implied additive separation of propagation and media-interaction
terms. As Louis Fishman has put it, the equations

∂ψ̂(κ;x)

∂x
= ikg(κ)

[
ψ(κ;x) + 1/

(
2g(κ)2

) ∫
ψ(x, y′)

× X(x, y′) exp{−ikκy′}dy′] (24)

∂ψ(x, y)

∂x
= Θψ(x, y)+

k2

∫
H

(1)
0 (k |y′ − y|)/ (4i)ψ(x, y′)X(x, y′)dy′ (25)

where Θψ(x, y) represents an incremental free propagation step, are just plain
wrong! At best, the FPE defined as

∂ψ(x, y)

∂x
= Θψ(x, y)− ik

2
X(x, y)ψ(x, y). (26)

can be applied reliably only when the parabolic form of the propagation oper-
ator is used. Bremmer series applications [6], have yet to produce tractable
algorithmic results.

2.2 Factorization Methods

An alternative approach to constructing solutions to (10) uses a formal factor-
ization. Rewriting the Laplacian as a differential operator,

∇2 = ∂2/∂x2 +∇2
⊥, (27)

identifies the x axis as a propagation reference. The differential operator form
of the wave equation,(

∂2

∂x2
+∇2

⊥ + k2K(x, y)2

)
ψ(x, y) = 0, (28)

where

K(x, y)2 = I +X(x, y), (29)

can be formally factored to as

∂2

∂x2
+∇2

⊥ + k2K(x, y)2

=

(
∂

∂x
− i
(
∇⊥ + k2K(x, y)2

)1/2)
×
(
∂

∂x
+ i
(
∇⊥ + k2K(x, y)2

)1/2)
. (30)
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The factorization is strictly valid only if the factored components commute,
which would eliminate variation along the propagation direction. However,
commutation equivalence is necessary only over are integration steps.
The operator factorization form of the forward propagation equation is(

∂

∂x
− i
(
∇⊥ + k2K(x, y)

)1/2)
ψ(x, y) = 0. (31)

Approximating the square root operator with the first term ina Taylor series
expansion leads to the parabolic wave equation or Feit-Fleck approximation [7],
which is equivalent to the FPE with the propagation operator replaced by its
parabolic form. A formal operator extension to propagation in inhomogeneous
media has the general form

ψ(x, y) =

∫
ψ̂(x;κ) exp{iΩ(x;κ,K(x, y))} exp{−iκ(y − y′)}dκ

2π
, (32)

where Ω(x, y;κ,K(x, y)) is the spectral-domain counterpart of the square-root
operator developed in a series of papers by Fishman [8] [9] [10]. An intuitively
appling approximation

Ω(x;κ,K(x, y)) =

√
K(x, y)2 − (κ/k)

2
x, (33)

can be applied over incremental slabs. The approximation was rediscovered in
acoustics by [11]. However, the y variation precludes effi cient FFT evaluation,
which makes evaluation very time consuming.

2.3 Parabolic Differential Equation Methods

The square root operator can be approximated by implementing analytic ap-
proximations to the square-root function. The approximation is improved by
substituting ψ(x, y) = exp{ikx}U(x, y) in the operator form of the wave equa-
tion: (

1

k2

∂2

∂x2
− 1 +K(x, y)2 +∇2

⊥/k
2

)
U(x, y) = 0. (34)

Following Collins, [12], the PDE can written as

∂U(x, y)

∂x
= ik

(
−1 +

√
1 +XP

)
U(x, y) (35)

where
XP = K(x, y)2 +∇2

⊥/k
2. (36)

The Pade approximation, which treats XP as a complex variable, is defined in
terms of precalculated coeffi cients such that

−1 +
√

1 +XP '
n∑
j=1

αj,nXP

1 + βj,nXP
. (37)
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A split-step solution is implemented with phase corrections,

u(x+ ∆x) = exp{ik∆x(−1 +
√

1 +XP )}u(x), (38)

which leads to the replacement of the summation by a product form

n∏
j=1

1 + λj,nXP

1 + µj,nXP
. (39)

Recognizing that XP contains second derivatives, the coeffi cients are chosen
to ensure that the differential-equation solution is stable and accurate. The
PDE method has produced accurate forward propagation solutions. However,
selections of coeffi cients and sampling is problem specific.
The book "Parabolic equation methods for electromagnetic wave propaga-

tion," by Levy [13] presents a complete treatment of parabolic wave equation
(PWE) methods including stochastic structure, and boundaries.

2.4 Eigenvector Methods

As demonstrated in Collins and Segman [12], the most demanding inhomoge-
neous media problems can be implemented with the Pade approximation. How-
ever, there is a way to construct an exact solution to the forward approximation

∂ψ(x, y)

∂x
= ikQ(x, y)ψ(x, y),

where

Q = k

√
1 +X +∇2

⊥/k
2. (40)

Following [14], consider the formal vector matrix solution

−→
ψ= exp{ik∆x

←→
Q }−→ψ (41)

where
←→
Q is a matrix square root. To interpret the matrix operator

←→
Q , let

ρn = exp{2πin/N}, (42)

which is an eigenvector or the matrix form of the discrete Fourier transform
(DFT):

←→
R = [ρmn ] n => col, m => row
←→
R
−→
ψ , (43)

where
←→
R ′
←→
R =diag(1/N). It follows that with

←→
K = −diag( (κn/k)

2 ) (44)
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The matrix argument of the square root can be written as

←→
Q =

√←→
R ′
←→
K
←→
R /N + diag(1 +Xy) (45)

There is an exact solution for Xy = 0. Rewriting
←→
Q as

←→
Q =

√←→
R ′(
←→
K +

←→
I )
←→
R /N (46)

the eigen vectors of ←→
Q 2 =

←→
R ′(
←→
K +

←→
I )
←→
R /N (47)

are the column vectors of
←→
R /
√
N A formal matrix solution that advances any

starting field can be constructed as follows

−→
ψ =

←→
R

((←→
R ′
−→
ψ 0

)
exp

{
−k∆x

√
diag(1− (κn/k)

2
)

})
; (48)

which can be rewritten as

−→
ψ =

(←→
R ′
−→
ψ 0

)
exp

{
−k∆x

√
diag(1− (κn/k)

2

}
←→
R (49)

The computation follows from an eigenvector decomposition of
←→
Q 2

←→
Q 2 =

←→
Ξ ′
←→
Λ
←→
Ξ . (50)

The same eigenvectors define
←→
Q

←→
Q =

←→
Ξ ′
√
←→
Λ
←→
Ξ ′ (51)

The final solution is

−→
ψ=
←→
Ξ ′ exp{ik∆x

√
←→
Λ }←→Ξ −→ψ0 (52)

As a consistency check for free space

diag(
←→
Λ ) =

√
1− (κn/k)

2
),
←→
Ξ = R/

√
N. (53)

In effect, the complexity of implementing the Pade approximation has been
traded for the complexity of computing the eigenvectors of a large matrix. For
exploration purposes, the ease of implementation make eigenvector solutions
very attractive. However, the eigenvector computation is prohibitively time
consuming for range-dependent structure.
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2.5 Ray Optics

Whether FPE, PDE, or OHE solutions are implemented, other than internal
consistency it is desirable to have a exact result for verification. With χ = I,
the formally exact defining equation is

∇2E+k2E = ∇(∇ ·E)− k2XE. (54)

Ray optics is based on the assumption that the field associated with a prop-
agating field can be apporoximated locally as single plane wave with a slowly
vary amplitude and a smoothly varying phase. Following the development in
Born and Wolf [15, Chapter 3.2], E(r) is approximated as

E(r) = Ẽ(r) exp{ikϑ(r)}. (55)

Inserting (55) into the vector wave equation and retaining only terms that are
first-order in ∆X leads to the to the defining equation

(∇ϑ)
2

= n2, (56)

where
n2 = 1 +X. (57)

The identification of n as a refractive index follows from the definition

∇ϑ = n (58)

where ϑ = kn · r. Wavefronts are defined by contours of constant ϑ. If s
represents distance along a ray, normal to ∇ϑ, the defining equation can be
rewritten as

n
dr

ds
= ∇ϑ. (59)

Eliminating ϑ, leads to the ray equation

d

ds

(
n
dr

ds

)
= ∇n

d2r

ds2
+

dn

nds

dr

ds
=
∇n
n
. (60)

Let

τ =
dr

ds
, (61)

whereby

dτ

ds
+

dn

nds
τ =

∇n
n

(62)

dτ

ds
+ s·

(
∇n
n

)
τ =

(
∇n
n

)
, (63)
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where s is a unit vector along the ray direction. The defining ray equations
are fully three dimensional an impose no constraint on the structure other than
a self checking smoothness. Reflecting boundaries are readily accommodated.
A complete treatment of ray theory and its extension to vector fields is

demanding and leads to advanced mathematical procedures. For example, the
ray theory in the seminal text "The propagation of radio waves," by Budden
[16] is not presented until Chapter 14. The implementation of the Haselgrove
equations requires variational calculus methods Colman [17]. However, for our
purposes here an implementation of the ray equations here will suffi ce.

3 Examples

3.1 Ray Trace

A two-dimensional propagation calculation is defined by a height, a propagation
distance, a starting field, a specification of X and frequency, f . An absorbing
upper boundary accommodates escaping energy. A reflecting surface or imple-
mentation of the forward boundary method described in Rino and Carrano [4]
reflects fields at the lower boundary. Current implementations of the PDE
and OHE solutions accommodate conducting boundary surfaces with Dirichlet
boundary conditions. For exploration a spherical earth propagation environ-
ment was implemented. Figure 1 shows the refractive index at 10 MHz for a
Chapman layer at 300 km. Rays traced from the source at 50 kM are over-
laid. A direct implementation of (60) modified to reflect rays from a smoothly
varying boundary surface was used to calculate the ray paths. Altitude is mea-
sured along normal radials from the surface height defined by a function of as
a function of y and z. The refractive index for a layer at a fixed radial distance
is z dependent. The use of the z axis as the propagation reference for display
is an FPE legacy.

3.2 FPE

Although the complete propagation grid was used for the FPE simulations in
Rino and Carrano [3], [4], SSPDE and OHE applications require significantly
more computation. Consequently, a truncate propagation space was used. The
upper frame of For reference, Figure 2 shows the FPE field intensity for beam
propagation into a refracting Chapman layer. A ray initiated at the 20 km
source height along the measured beam peak direction is overlaid (white). The
lower frame shows the spectral intensity with the ray trace direction overlaid.
The upper frame in Figure (3) shows the total intensity of the FPE field, which
is invariant as long as the field is confined to the propagation space. The
loss at the surface reflection is caused by the shift-map implementation of the
boundary variation. The lower frame shows the spectral domain peak intensity
with the ray direction overlaid, which varies in response to induced waveform
variations. For a concentrated beam we expect the trajectory of the peak
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Figure 1: Capman layer with rays launched from 50 kM overlaid.

intensity to coincide with the ray launched along the ray direction. However, as
consistently observed, FPE propagation in highly refractive environments under
estimates refraction. Without the ray trace for comparison the error might not
be noticed.
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Figure 2: Upper frame is FPE beam intensity with ray trace overlaid. Lower
frame shows. Lower fram shows spectral intensity plotted against normalized
wavenumber. Ray direction is overlaid.

Figure 3: Upper frame shows FPE total intensity. Lower frame shows peak
intensity.
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Figure 4: Upper frame is SSPDE beam intensity with ray trace overlaid. Lower
fram shows spectral intensity plotted against normalized wavenumber. Ray
direction is overlaid.

3.3 SSPDE

Figures 4 and 5 summarize an SSPDE simulation of the Chapman layer envi-
ronment with a plane conducting layer. The plane conducting layer is used
because the solution is formally exact. The upper frame in 4 summarizes the
beam intensity with the ray trace overlaid. The lower frame shows the spectral
intensity with the ray direction overlaid. Whereas the spatial domain peak
aligns almost perfectly with the ray trace, the spectral domain peak deviates
from the direction of the ray path. This is attribute to the asymmetry of
beam as it forms a caustic beyond the point of inflection. Because the surface
reflection is symmetric about the normal direction the ray path direction co-
incides with the peak. Figure 5 shows the integrated intensity and the beam
peak intensity, which increases and decreases in response to induced beamwidth
changes. The vertical sampling is 12 per wavelength, 6 samples per wavelength
along the propagation direction, and 8 Pade coeffi cients. The over sampling
and the number of Pade coeffi cients was determined by trial and error.
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Figure 5: Upper frame shows SSPDE total intensity. Lower frame shows peak
intensity.
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Figure 6: Upper frame is OHE beam intensity with ray trace overlaid. Lower
fram shows spectral intensity plotted against normalized wavenumber. Ray
direction is overlaid.

3.4 OHE

Figures 6 and 7 summarize the OHE calculation. The OHE calculation is per-
formed with the same critical sampling used for the FPE calculation. Although
oversampling is unnecessary for OHE, the eigenvector computation is compu-
tationally demanding. However, in a transversely inhomogeneous medium only
one evaluation is needed. It is encouraging that the SSPDE and OHE results
are identical, including the departure of the ray direction from the spectral
domain peak through the caustic formation. It also shows that the SSPDE
oversampling is driven by the Pade approximation not evanescent fields.
Belyaev et. al [14] computed the refraction of a beam injected into a neutral

layer, which effectively trapped the beam. Figure shows a similar calculation
at 10 MHz. The overlaid ray trace required height and direction adjustments
to achieve agreement with the wave intensity peak. As with the Chapman layer
the ray angle shows significant departures from the wave spectrum peak.

3.5 Commutation limitation

It is generally argued that although factorization methods are strictly valid only
in transversely inhomogeneous environment variations that are slow compared
to computation intervals can be accommodated. It has been demonstrated that
the range dependence imposed by a layer at a constant radial distance a more
stringent test is realized by a neutral gaussain lens, generated by a truncated
gaussian layer as shown in Figure 10 shows the refractive index of a neutral
Gaussian lens with three parallel rays overlaid. The lens action is realized by
uniform incident illumination rather than the curvature imposed by a compact
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Figure 7: Upper frame shows SSPDE total intensity. Lower frame shows peak
intensity.

Figure 8: Upper frame is beam injected into a neutral Gaussian layer forming
waveguide like propagation. The lower frame show the spectral domain peak
with the ray direction overlaid.
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Figure 9: Upper frame shows OHE total intensity. Lower frame shows peak
intensity.

source. A common technique for generating a more uniform illuminating field
is beam simulation [18], which is a superposition parallel beams. As a test of
the refraction a superposition of two parallel beams was used. Figure 11 shows
the spatial and spectral domain intensities of the two-beam superposition with
the ray trace overlaid. The agreement between the ray trace and beam central
crossings show that the range variations had no impace on the calculation.

4 Summary and Conclusions

Whereas tractable EM forward marching algorithms can be constructed for near
line-of-sight propagation in the VHF to S-Band frequency range, the extension
to lower frequencies developed in our papers [3] and [4] produces results that
must be used guardedly. More than underestimating the refraction predicted
by ray tracing, there is no fully consistend to construct vector fields from inde-
pendently scalar wave computations. The safest procedure is to apply SSPDE
to scalar wave equations with the refractive index precomputed mode refractive
indices using the Appleton Hartree equations guided by ray trace computations
and their extension to full-field approximations.
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Figure 10: Refractive index of neutral Gaussian lens with parallel rays overlaid.

Figure 11: Upper frame shows OHE total intensity. Lower frame shows peak
intensity.
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