2014 AGU Poster and Supplemental Material

A new version of a configuration space ionospheric structure model is described.  Previous versions of the model used a random distribution of striation scale sizes.  While in principle this scheme should work, it proved to be difficult to manipulate the size distribution parameters to generate a range of power-law indices.  A new approach based on successive bifurcation solved the problem. The details are described in the following report ConfigurationSpaceModels.   AGU2014Poster

Posted in Uncategorized | Comments Off

Application of Wavelet Based Analysis to C/NOFS Ionospheric Density Measurements

In a previous post a wavelet-based analysis procedure was described and demonstrated with simulated inverse-power-law data http://chuckrino.com/wordpress/?p=464.  The analysis procedure has been applied to a large number of C/NOFS high-resolution equatorial measurements during periods of strong ESF.  The data are particularly well suited to wavelet-based analysis because large extent of the data sets (>1000 km) and the structure scale range.  The analysis and results are described in a paper accepted for publication in Radio Science. URSIPaper2014.

Posted in Uncategorized | Comments Off

Wavelet Based Analysis of Ionospheric Data

Ionospheric diagnostics come from in-situ probes carried by rockets or satellites, forward propagation, and radar backscatter.  This blog entry addresses in situ measurements and remote sensing via forward radio propagation from satellite to ground propagation paths.  In situ measurements are time series generated the probe trajectory through the three-dimensional ionospheric structure.  Propagation measurements are one-dimensional scans of a diffraction field that responds to the cumulative structure along the propagation path from the source to the receiver.  The one-dimensional measurements are highly non-stationary with a very large range of contributing scale sizes.  The unpublished manuscript PowerLawModelsMethodsREV1 reviews current stochastic models and presents a wavelet-based analysis procedure for identifying data segments that can be characterized by a generalized power-law structure model.  A classifier finds a two-component power-law fit with a goodness-0f-fit measure using wavelet scale spectra.

As discussed in detail, wavelet scale spectra are particularly well suited for analyzing the class of non-stationary fractional Brownian motion (fBm) processes introduced by Benoit Mandlebrot.   FBm processes have a self-scaling property akin to fractals that is often invoked to characterize the structure cascade associated with convective instabilities.  The paper establishes a framework for data analysis and, ultimately, structure model improvement.  This material updates and replaces earlier blogs that addressed the same material.

Posted in Uncategorized | Comments Off

AGU 2013 Poster and Supplemental Material

Tomographic reconstruction of ionospheric electron density profiles from GPS satellite measurement is being used extensively for global ionospheric monitoring.  For the most part, the reconstruction process is a constrained iterative process.  The results are sensitive to errors and initial conditions.  To study these limitations and the possibility of high-resolution reconstruction two-dimensional simulations have been used.  The simulation and analysis procedures are described in IntermediateScaleTomography, with the accompanying poster RinoPosterSA21B-2019(2).

Posted in Uncategorized | Comments Off

Phase Screen Models for Numerical Computation

To the extent that propagation disturbances can be approximated by an equivalent phase-screen, there are analytic models that allow computation of the power-spectrum of the intensity of the field as it propagates away from the phase screen.  The analysis involves an integration to characterize the structure initiation as a phase perturbation and a second integration to propagate the structure to the observation plane.   In real-world applications the integrations are two dimensional.  However, the field-aligned structure in the ionosphere can be exploited to reduce the computations to one-dimensional integrations.

This motivated a revisit of early computations based on two-dimensional and one-dimensional phase screens.  To test the numerical computations, which were performed by Charlie Carrano at the Boston College Institute for Scientific Research, analytic results for unconstrained inverse power-law spectra were used.  Disparities between the computations and the analytic results motivated a careful look at the analytic results derived from complicated limiting operations.  Some errors were found that clarified some long standing disparities between results by Victor Rumsey for isotropic structures and my own two-dimensional results, which should agree with the isotropic results if isotropy was assumed.  The new results are summarized in PowerLawPhaseScreenHighlights, with computational details presented in a separate note. PowerLawPhaseScreenReview,

An updated book errata sheet can be found ScintTheoryErrata

Posted in Uncategorized | Comments Off

Beacon Satellite Symposium 2013 Keynote Talk

The following attachment is the keynote talk presented at the Beacon Satellite Symposium, Bath England, July 8, 2013 KeynoteTalk

Posted in Uncategorized | Comments Off

2013 Cedar Workshop

The following attachment was presented at the CEDAR workshop Friday 29 June at Boulder Colorado. CEDAR-Talk-Rino

Posted in Uncategorized | Comments Off

Workshop on GNSS Data Applications to Low Latitude Ionospheric Research May 2013

The following attachment was presented at the International Center for Theoretical Physics, Tereste Italy, on May 14, 2013 GNSS_Rino

http://cdsagenda5.ictp.it/full_display.php?ida=a12180

Posted in Uncategorized | Comments Off

Oblique Propagation

Chapter 4 of my book develops a computational framework for beacon satellite propagation.  With a reference coordinate system centered at ionospheric heights, even small propagation angles lead to very large displacements in the observation plane.  To avoid this problem, a continuously displaced coordinate system is used.  The defining equation in Section 4.1 was in error, which combined with some other errors in the defining equations made it difficult to reconstruct the equation upon which most of the calculation in Chapter 4 is based.  Equation 4.5 is correct.  A revision of an earlier derivation is attached.  I’m indebted to Harold Knight and Kshitija Despande for pointing out the inconsistencies. The errata sheet has been updated and placed on the book page.BookNotesNew

The blog entry Statistical Theory of Scintillation Update provides some background material.

Posted in Uncategorized | Leave a comment

Statistical Theory of Scintillation-Update

In Chapter 3 of my book the system of differential equations that characterize the propagation of complex two-frequency field moments in irregular media were developed. The attached note reviews this material and its connection to the original and most cited source of the equations in the scintillation theory literature.  A number of small but annoying errors in the equations have been corrected, and some definitions have been added for clarity.   With recent updates and additions as of July 23, 2011,  BookNotesCh3fourth-moment-notes, ScintTheoryErrata

Posted in General Interest | Tagged , | Leave a comment